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ABSTRACT

A method of interframe motion measurement and compensation, based
on approximation of piecewise linear translation of small rectangular
areas, is presented. This method significantly improves the temporal cor-
relation (10 to 12 dB reduction in interframe variance) and permits re-
duction of sampling rate along temporal axis. A technique of visual
characterization of interframe characteristics, based on temporal cross-
sections, is described.

Some commonly used statistical models for prediction of the
variances of transform coefficients, in intraframe and interframe trans-
form coding, are compared. Results show that measured statistics in
transform domain result in 2 to 4 dB improvement over commonly used
separable covariance models. A method of adaptation for the local changes
in image statistics in transform and.hybrid coding is developed. This
results in great improvement (about 4 dB) in performance. A hybrid coding
scheme using motion compensation, frame skipping, and interpolation of
skipped frame along motion trajectory is presented, which further improves
the coder performance.

Interframe transform and hybrid coding schemes are compared against
intraframe transform coding and some simple interframe predictive coding
schemes. Also, distortion-rate curves for hybrid coding, based on models
of interframe motion have been plotted. The applications of transform and
hybrid coding to biomedical x-ray images has been considered, and the
results show that significant compression can be realized for these

images. The effects of distortion due to data compression of x-ray
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projection images (used in computed tomography) on the reconstruction
images (by inverse Radon transform) have been evaluated.

A method for joint optimization of source coding and channel
coding for PCM transmission over noisy channels is presented. It is
shown how this method can be applied to transform coding of images. The
results show that this method performs significantly better than the con-
ventional error ccrrecting codes or schemes with no channel protection.
At a rate of 1 bit/pixel and channel error probability of 10_2, the
proposed method results in 10 dB improvement over an ordinary transform
coder.

The performance of several transforms has been compared for some
commonly used intraframe nonseparable covariance models. The results
indicate that the cosine transform performs very close (.05 dB at 1 bit/

pixel) to the optimum K-L transform.
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CHAPTER 1
INTRODUCTION

A monochrome image* is a function of two spatial variables. Many
imaging <vstems generate multiple frames of images. These multiple
frames could be a function of time (e.g., in television) or other varia-
bles (e.g., angle of view and time in dynamic spatial reconstruciton,

Robb [63]). Sampling of these variables depends on the application, e.g.,
in broadcast television the time axis is sampled at 50-60 samples per
second to avoid flicker.

For digital processing, an image frame Is sampled along both the
spatial axes. Nyquist sampling theory provides the most important step
towards a reduction of digital information required to represent a con-
tinuous signal. This theory states that any bandlimited signal, sampled
at a rate greater than twice its highest frequency content, could be re-
produced without introducing any distortion. 1In the simplest binary
coding, each sample of an image, called a pixel, is quantized independently
by a finite number of bits. This is called pulse code modulation (PCM).
For raw image data, each pixel is uniformly quanitzed, and is represented
by a fixed number of bits. For human viewing of an image, 8 bit:/pixel
gives sufficient resolution. For broadcast television, the data rate for

PCM transmission of images is approximately 65 Mbits/sec.

1.1 Interframe Data Compression Problem

It is evident that the enormous data rates generated by multiple

frame images would results in high costs of transmission and/or storage.

* ag opposed to a color image

’




Thus, there is a great need for reducing the data rates as much as possible.

Interlacing of the fields in television broadcasting is a form of data com
pression which exploits the retention properties of human vision.

A simple statistical or visual analysis of the image data reveals
that there is very high correlation between adjacent pixels, both within
a single frame and from frame to frame. This high correlation results in
significant redundant information in the original raw data. The basic
problem of data compression is to effectively exploit this redundancy to
reduce the data rates.

A number of data compression (also called coding) schemes have been
developed for single image frames, [5,22,29,31,36,38,51,53,58,75,77,83,87].
These are called intraframe coding schemes and are based on exploitation
of spatial redundancy. The interframe coding schemes on the other hand,
utilize the redundancy between the frames as well as within the frames
and generally achieve higher compression than the intraframe schemes.

In principle, it is possible to compress the digitized data without
introducing any further distortion (digitization itself introduces distor-
tion). However, such schemes do not yield large enough compression ratios.
It is possible to achieve much larger compression by introducing small but
acceptable (depending on the application) distortion in the originally
digitized data. Thus, we need some quantitative and qualitative measures
of the distortion. The problem of data compression then becomes the mini-
mization of data rates for a given distortion level or, equivalently,
minimization of the distortion for a given data rate.

The quantitative distortion measure we use is the well known mean

square error (MSE or m.s.e.) criterion. Let w g 3 be the intensity of
9’ L]
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a sample of a digitized three dimensional image data array and u; 1,] be

its reproduced value after data compression. Then the MSE due to data

compression is defined as

1l ¢ 2
MSE=N—Z
1

(o}

*
i, 7 %,1,50

|

L]
where NO is the total number of samples in the array over which the MSE
is being measured. Such a global criterion of overall mean square error
is not always very meaningful, especiallv at moderate to high levels of
distortions. So this has to be used with some qualitative measures to
judge the quality of the reproduced images. Some qualitative measures are
given in [12]. A simple method is to judge the images by viewing the
ercoded image and comparing it with the original image. The inspection
of the error images (amplified to give full dynamic range) is also
very informative about the distribution and structure of the errors.
Sometimes the MSE measured over locally homogeneous regions of an image
is also quite useful. More sophisticated criteria, such as freqiency
weighted mean square error [53], or visibility of errors, etc., are
possible, but are difficult to incorporate in interframe data compression
alzorithms.

The MSE is also expressed by a quantity called the signal to noise

ratio (SNR or S/N), defined in decibels (dB), as

(Peak to Peak Signal)2
SNR = 10 log dB .
10
MSE

1.2 Digital Image Transmission System and Applications of Data Compression

Figure 1-1 shows a schematic of a typical digital image transmission

(or storage-retrieval) system. Block 1 consists of an image sensing or

acm T N 4
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acquisition system. It could consist of a continuous sensor (e.g., a
raster scanning camera) or an array of detectors arranged at the sampling
grid. The acquired image signal is then sampled (if continuous) and digi-
tized in block 2. Block 3, which is of most interest to us, contains a pro-
cessor which performs data compression. The compressed data is encoded
into bits in block 4. Error protection for transmission over noisy channels
is also done here. The binary coded data is transmitted or stored
{block 5). Blocks 6 through 9 perform the inverse of most of the func-
ticns performed in blocks 4 through 1 (not all the functions performed in
these blocks are invertible, e.g., quantization). Tor the most part
(chapters II to V) we will be concerned with blocks 3 and 7. There, we
have integrated blocks 4-6 into a single block namel ''c¢hannei’. In
chapter VI, where we deal with image coding for noisy transmission channels,
we will consider blocks 4-6 in detail.
There are several consideratibns in developing the data compression
algorithms of hlock 3 in addition to reducing the data rate. These con-~
siderations include the complexity of binary encoder and decoder, real
time processing in blocks 3 and/or 7, uniform or variable data rates,
amount of storage, size of channel buffer, noise characteristics of the
channel, etc.
There are many applications where interframe data compres:-ion of
images could be used with great savings in transmission/storage (osts.
These include television transmission between stations, teleconferencing,
videotelephone, satellite images, biomedical x-ray images in computer
aided tomography and angiocardiography, etc. For future projections for é
satellite communication traffic for television and teleconferenciug,

see [73].
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1.3 Background and Review of Current Multiframe Coding Techniques

The multiframe data compression schemes reported in the literature
have been applied mostly to video images, generated by a teievision or
a movie camera, where the interframe variable is time. In some applica-
tions, e.g., television and videophone, a time evolving scene is regis-
tered as a sequence of equi-interval images by a camera, which is mostly
stationary. In other applications, such as remotely piloted vehicle (RPV),
a moving camera is capturing a time changing scene. In the former appli-
cations, the changes from one frame to the next, with respect to a fixed
location in the frame, are mostly localized in some areas of the frame.
While in the latter case, such changes occur throughout the frame. These
changes, including those due to zooming the camera, are called inter-
frame motion.

A simple method of detecting motion becween two consecutive image
frames is by measuring the temporal changes between them. Suppose uk,i,j
represents the intensity of the (i,j)th pixel of the kth frame. If the

interframe difference (IFD) signal,

dei!j = uk)i:j - uk—l,]'.,j ’

exceeds a certain threshold, then the (i,j)th pixel of the kth frame is
classified as moving. An inherent assumption here is that the illumination
from one frame to the next remains unchanged. Generally, the moving pixels
occur in clusters [13], and constitute the so called moving areas. The

rest of the image constitutes the stationary areas. Techniques which are

adjusted according to the local changes in spatial and temporal charac-

teristics of images are called adaptive methods.
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Interframe coding techniuges could be broadly classified into three
categories. The first category, a subject most investigated, is calied
prediztive coding. Herc the intensity value of a current pixel in a
raster scanned image is predicted from the knowledge of the nreviously
scanned and coded pixels., Generallv, the pixel neizhborhood used in pre-
diction is limited to be 2 small set of pixeis in the present and the
preceding image frames. This is because of the Markovian nature orf the
data and it limits the memory requirements to slightly mcre than one
image frame. The prediction error, which represents the nev information
in the current pixel, is quantized and coded. For highly correlated data,
the prediction error is generally small and can be coded by much fewer
pits than required in PCM transmission.

The second category, developed more recently for multiirame images,
is called transform coding. While in most predictive coding schemes we
end up with as many samples as the input data, transform coding packs the
information in much fewer samples which need to be coded. Typically,
the interframe data is divided into smaller three dimensional arravs,
called sub-blocks, of equal size. Each sub-block is then operated upon
by a three dimensional, separable, unitary transform and the selected
transformed samples are quantized and coded independently. The wsub-blocks
are reconstructed by taking the inverse transform. This method :equires
storage equal to the number of frames in the temporal direction (f the
sub-blocks.

The third category is a combination of the above two and is called

hybrid or transform/predictive coding. Here, each image frame is divided
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into equal size sub-blocks and each sub-block is transformed by a two
dimensional separable unitary transform. Predictive coding is then per-
formed along the temporal axis, for each transformed sample, to exploit
frame to frame correlation.

Interframe coding techniques have gained momentum only since the
mid-sixties. A brief review of the recent work is given below for each

of the three categories.

1.3.1 Predictive Coding Techniques - Due to their simple hardware

realization, considerable work has been done on predictive coding schemes.
In [52], prediction is based on the previous pixel of the same scan line
and the technique is essentially an intraframe one dimensional DPCM.
Recognition of the fact that a vast majority of pixels in a given
frame do not differ noticeably from the corresponding pixels of their
preceding frame (i.e., most of the image field in successive frames is
stationary) has led to interframe predictive schemes which do not require
transmission of stationary pixels. In [48], the prediction of a pixel
is simply the intensity value of the corresponding pixel in the preceding
frame. If the absolute value of the prediction error is larger than a
threshold, it is quantized and coded together with the address of the
pixel. Otherwise, the value of the pixel in the preceding frame is re-

peated. This technique iIs called conditional replenishment because only

the moving areas of the image are replenished from one frame to the next.
It is evident that the rate at which the code is generated varies depend-
ing on the size of and activity in the moving areas. If the transmission
channel is designed for an average data rate, then an arbitrarily large

buffer would be required to take care of large fluctuations in the level
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of motion. To limit the buffer requirement to a reasonable size, a
variable threshold is used. The threshold is increased as the buffer
is filled up, therebv reducing the rate at which the data is zenerated.

It has been noted [57] that the spatial resolution in thne
moving areas and the temporal resolution in the stationary areas of an
image can be reduced without noticeable reduction in the quality of per-
ception of the scene. This ic called the exchange of spatial and temporal
resolution. 1In [44] a simple coder has been described which exploits
tniis exchange of resolution to reduce the data rate.

In {13], the conditional replenishment method of [48] has heen
improved, and some of the techniques of [44], together with some «ther
adaptations, have been used to result in a more efficient coder with
increased complexity. We have simulated this technique for comvparison
curposes and a brief description is given in chapter III. A review of
the above techniques and some other simpler techniques is given in [24].

If some area of a frame is moving at a speed larger than 1 pixel/
frame, then it is obvious that for a pixel belonging to such an area the
correlation with intraframe neighbors would be higher than that with the
corresponding pixel in the preceding frame. Hence, in the absernce of the
knowledge about the direction of the motion, an intraframe prediction
error would have a lower variance than the interframe difference .ignal.
Thus, more compression can be acliieved by coding the intraframe prediction
error in such moving areas. A scheme utilizing this is reported in [42].
To detect the moving areas an adaptation, better than that of [48] and

(13}, is used.
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The correlation, power spectrum, and some other properties of
frame-difference signal are reported in [17]. Mathematical analysis as
well as experimental results are given. The results of this study have
been used in [42] to design a better segmenter of moving and stationary
areas for the purpose of coding. The simulation results for the entropy
of prediction error signal for a variety of predictors (using different
combinations of the neighborhood pixels in the present and the preceding
frame) at various speeds are reported in [23]. Pictures with different
resolutions have been used to compare entropy versus resolution at
various speeds.

Most of the coders described in [13,24,42,44] are designed for a
data rate of 0.25 - 1.0 bits/pixel and for a signal with 1 MHz bandwidth,
the data rate is .5 - 2 Mbits/sec. In [26] a very low bit rate coder,
.1 bit/pixel,or 0.2 Mbits/sec., has been described which reproduces the
stationary areas quite well, but scenes containing moderate and large
motions are visibly smeared and blurred. It combines cluster coding of
[13], a higher order prediction given by the line-to-line difference of
the frame difference signal, subsampling in spatial and temporal direc-

tions as needed, temporal filtering, etc., to achieve this low data

rate. Low pass temporal filtering of the signal is done to reduce the
entropy of the prediction error. A near-ideal low pass filter would re-
quire several frame memories. To limit the memory requirement to one frame,
a simple temporal filtering could be performed by sub-gampling in temporal
direction and then interpolating the missing frames. In [26] temporal
filtering is performed by a simple averaging of the incoming frame and the

previously stored frame. Because of the temporal filtering by averaging, the

st
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jerkiness in motion due to temporal subsampling is less objectionable.

Most of the experiments reported in the aforementioned literature
were carried out on data sampled at about 2 X 106 samples/sec. The
coder of [13] at 1 bit/pixel thus has a data rate of 2 Mbits/sec. For
many applications, a higher resolution with a sampling rate of 8 x 106
samples/sec. is desired. At 1 bit/pixel it would require a high data
rate of 8 Mbits/sec. A coder is described in {25}, which compresses the
data rate to 1.5 Mbits/sec. or .19 bit/pixel. It is reported to give
acceptable quality with some blurring of the moving areas in TV-conference
type of applications, where for the most part the camera is stationary
and the moving subjects do not move too rapidly. This coder utilizes
conditional replenishment of [13], moving area segmenter of [42], a
higher order predictor, and a temporal filter, as in [26]. Variable
quantizer levels and sub—samPling in spatial domain are used to maintain
a smooth data rate.

A coder which uses the interframe sample difference, temporal
filtering by attenuating the frame difference signal, spatial subsampling
in both directions when buffer starts filling up, variable length code
words, etc., is reported in [84]. It is designed for 4 MHz videotelephone
and NTSC color TV signals, and operates at an average rate of 6.312 Mbits/
seﬁ. An interframe coder for NTSC color TV signals has also been built
by Nippon Electric in Japan and has been reported in [30}. This is de-
signed for high quality transmission and operates at 16-32 Mbits/sec.

A higher order prediction coder which differs considerably from
those discussed above is described in [10]. It assumes that the interframe

data is a sample of a 3-D wide sense stationary random process whose

ey
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covariance is separable and first order Markov in each dimension. Under
this assumption, the optimal predictor is based on seven pixels with
prediction coefficientsdirectly related to the one step correlation in

each direction. Figure 1-2 shows the pixels and their prediction coeffi-
cients used in the prediction of the point marked S. The prediction error is
quantized and coded using variable word length codes. The one step tem-
poral coefficient, aF, has been set equal to 1 to give better prediction
and low data rate in the stationary areas. This scheme also generates

data at a nonuniform rate and to keep buffer requirement reasonably low,
some adaptations have been made to reduce data rate when the buffer starts
filling up. Depending on the buffer contents, a temporal-spatial filtering
is performed in which a weighted average of the interframe difference sig-
nals of the neighboring pixels is taken. The weights are controlled by
buffer contents. An additional temporal filtering is used when buffer
overflow is imminent. This is achieved by attenuating the output of the
temporal-spatial filter used to reduce the entropy of the signal.

In all of the above techniques, the motion in any area of the scene
is inferred from the magnitude of the interframe difference signal. No
efforts are made to measure the nature and the direction of the motion.
Due to compnutational and dimensionality problems, most of the motion
analysis of interframe images has been restricted to translational mo-
tion, see e.g. {9,11,66]. 1In [66] a mathematical analysis is presented
where an image 1s divided into smalier areas or zones. For each zone
the displacement vector (x and y coordinates of the motion) and the
corresponding prediction errors (the prediction is based on the pixel
in the previous frame corresponding to the displacement vector of that

zone) are transmitted. For the purpose of analysis, a mathematical model
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Figure 1-2: Coefficients of the Seven Point Predictor Described in [10].
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for the random video process is constructed to determine the optimum

size of the zone which can be represented by a single displacement vector.
Methods for measuring small displacements, and segmenting an image

into stationary and moving areas with different displacement, has been

considered in [11]. Based on linear regression and approximation, simple

formulas are derived where the motion could be measured from interframe

difference signal and first order spatial differences in x and y directions.

To segment an image into moving and stationary areas, it is assumed that
there is only one moving object undergoing translation. A two state
Markov model with known state transition probabilities is assumed. A maxi-
mum a posteriori (MAP) detector of the Markov chain is found using the
Viterbi algorithm by observing interframe differences and assuming them
to be an independent sequence. Then the method is extended to more than
one moving object. Displacement measurement accuracy of .1 pixel/frame

for motion up to 2-3 pixles/frame has been reported.

An interframe coder using image segmentation and motion measurement
is described in [9], together with some experimental results. Each frame
is segmented into three areas, namely, stationary background, translating
objects, and areas which cannot be predicted from the previous frame, via
a tri-state MAP estimator. For stationary background and translating
objects, prediction is based on the corresponding pixels from the previous
frame. While for the remaining areas a spatial predictor is used.

A somewhat different approach to motion estimation and its appli-
cation to interframe coding has been recently published in {50]. Here
a pixel by pixel translational motion is recursively estimated and the

interframe prediction is based on the estimated motion-displaced-location
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in the previous fleld. The prediction error is cluster coded similar to

f13].

1.3.2 Transform Coding Techniques - The superior performance of

transform coding over other techniques for coding intraframe images is
well known. Its extension to interframe coding using 3-D transforms was
not attempted until recently, mainly because of the requirement of storing
several frames at the transmitter as well as at the receiver, resulting

in exorbitant memory costs. Recent developments in digital technology now
make it possible to store several image frames and thus make transform
coding feasible. Knauer [39] has reported some results on Hadamard trans-
form coding. He considers a block of 4 image frames at a time. Each
frame consists of two interlaced fields and contains 525 x 512 pixels,
each pixel originally quantized to 6 bits. This block of 4 frames is
divided into sub-blocks of size 4 X 4 X 4, Each sub-block is transformed
by a 3-D Hadamard transform (for definitions of various transforms used

in data compression, see [3,31,58]) and the transform coefficients are
truncated to 8 bits. To design the coder at a given bit-rate, a fixed
number of bits are distributed among various transform coefficients, a
majority of which are assigned no bits. The bit assignment has been

found by trial and error to give good visual quality. The coder can adapt
to motion by keeping high spatial resolution for stationary areas and
exchanging it for temporal resoltuion in moving areas.

The transform coder of [39] lacks the mathematical analysis in bit
assignment, which is an important aspect of transform coding. Roese [67],
Roese, et al. [68] and Natarajan and Ahmed [49] have extended the mathe-
matical analysis of 2-D transform coding to three dimensions and have

also reported experimental results on interframe coding.
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In {67,68] the interframe image random field is modeled as a
3-D, wide sense stationary first order Markov field with separable co-
variance function in each dimension. The interframe image data is
divided into smaller 3-D sub-blocks and then transform coded independently.
The bit assignment is based on the separable covariance model and Shannon
rate distortion bound for the quantizer. The transform samples are quan-
tized using a compander which performs very close to the optimum Max
quantizer. The distribution for each transform sample is assumed to be
Laplacian, except for the DC term, for which a Rayleigh distribution is
assumed. These distributions are reported in [67] to be good approxima-
tions for image data. The variances of the transform samples are found
from the covariance model chosen. Theoretical performance of the coder
& using Cosine transform for various block sizes has also been reported.
The mean square error decreases with the increase in block size, but it
also increases the complexity. The experimental results on the actual
data are also reported for the Cosine transform at various bit-rates for
a block size of 16 x 16 x 16.

The fact that the multiframe data cannot be satisfactorily modeled
by separable statisties (covariance), a model such as described in [67]
could yield poor coding performance. But we do need the transform domain

variances to design a coder without resorting to trial and error. In

[49] the authors suggest calculating the 3-D covariance function on a
portion of the image data over a window of the same size as the sub-block
and assuming the random process to be wide sense stationary. From this,
the transform domain variances could be calculated by appropriately taking
the transform. The three dimensional sub-blocks are stored as one dimen-

sional arrays by lexicographic orderingto facilitate the addressing. A
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Kronecker product of the transform matrices is then used to find the
equivalent 3-D transform of this array. The experimental results for a
block size of 4 X 4 X 4 for Cosine and Hadamard transforms are reported

at 1 bit/pixel for 4 MHz signals.

1.3.3 ¥Pybrid Coding Techniques - Because of difficulties in

modeling interframe image fields as well as the increased complexity of
the transform coders, transform/predictive or hybrid coding techniques
have also been investigated in [67,68]. These are extensions of the
intraframe hybrid coding described in [22]. Each frame is divided into
smaller equal size sub-blocks and each sub-block is transformed by a

unitary transform. Then a linear first order predictor is used in the

temporal direction. In a simple or non-adaptive scheme a separable first

order Markov model in each dimension is used. Based on this model the
calculation of transform domain variances and the optimum prediction
coefficient are easily found. Theoretical performance of this coder for
various sub-block sizes is reported. Another scheme, in which the local

changes in the statistics are taken into acount by measuring the statis-

tics, at the transmitter as well as the receiver (and using these statistics

for coding) has been reported with many experimental results. This scheme

has been called adaptive hybrid coding. Results for discrete Cosine and
Fourier transforms at various bit-~rates have been reported together with

the effect of channel errors. The adaptive hybrid scheme shows a much

better performance compared to the non-adaptive hybrid coding and transform

coding schemes based on a 3-D separable model. Also, some methods and
experimental results for motion compensation of the camera motion

have been reported in [67].
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1.4 Research Objectives:

In the broad context of interframe coding with emphasis on hybrid
and transform techniques, the following problems have been identified

and solutions proposed together with experimental results.

(i) The transform and hybrid coders reported so far allocate
equal bits to all the areasof an image. It is intuitively obvious that
the stationary areas with no interframe activity could be transmitted with
little or no bits, while those with more activity would require more
bits to transmit the changes. Our objective is to find ways of classi-
fying sub-blocks of images into classes of varying temporal and spatial

activity and assignment of bits for various classes.

(ii) Although, in general, the interframe motion is difficult to
characterize, in most cases it could be approximated by linear transla-
tion. Since hybrid coding is based on a block by block coding, we inves-
tigate the methods of measuring translation on a block by block basis and
use it for data compression. A technique for frame interpolation along

motion trajectory will be investigated to achieve higher data compression.

(i1i) Since the trajectory of motion of a pixel (or a block)
cannot be estimated perfectly, we consider models and effects of
uncertainty in trajectory estimation for data compression. We would also

like to find rate-distortion curves based on such models.

(iv) We investigate the problem of joint optimization of data
compression and channel encoding for minimizing the overall mean square

error for image transmission over noisy channels.
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(v) As pointed out earlier, the interframe data compression
schemes have been applied only to video images. We look at another
potential area of application, data compression of biomedical x-ray

images.

(vi) The performance of the hybrid and transform coding methods
is dependent on the choice of the transform. We evaluate the relative
performance of various transforms for a variety of non-separable two
dimensional random fields which have been used for modeling image co-
variance statistics. Previous results have considered only the separable

covariance model.

1.5 Description of Experimental Daca Sets:

We have used four very distinct types of multiframe image data
sets. Two of these data sets are video motion images obtained from the
Naval Ocean Systems Center, San Diego, California. The other two data
sets are x-ray images obtained from the Biodynamic Research Unit, Mayo
Foundation, Rochester, Minnesota. A brief description of these data is

provided below.

(i) Head and Shoulders (H & S) - contains 16 sequential frames

of 16 mm, 24 frames/second, motion picture of a subject (Walter Kronkite)
against a stationary background in conversation, digitized to 256 x 256

pixels/frame, 8 bits/pixel.

(i1) Chemical Plant ~ an aerial view of a complex of buildings

and roads from a moving platform, 16 frames digitzed to 256 X 256 pixels/
frame, 8 bits/pixel. It contains a fourth of a 35 mm frame digitized to

512 x 512 pixels/frame.
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(iii) Angiocardiograms - 100 X~ray images of the left ventricle

of a human heart taken at intervals of 1/30 sec., after injection of a
contrast material in the blood, contain four complete heart beat cycles.
Each frame digitized to 128 x 176 pixels with 8 bits/pixel. Spatial

resolution is .5 mm.

(iv) Projection Tmages - 120 X-ray projections of a dead dog's

thorax taken at intervals of 3° around an axis approximately through the
center of the thorax. Each image digitized to 128 x 128 pixels with
8 bits/pixel. Spatial resolution is = 1 mm. These images are used for

3-D reconstruction of the X-ray absorption densities of the thorax.

Since each data set is digitized to 8 bits/pixel, the inteunsity

range of the original data is between 0 and 255. Therefore, for the calcu~

lations of SNR, the peak-to-peak value of the signal has been taken as

255, even though the actual peak-to-peak signal could be somewhat smaller.

1.6 Dissertation Organization

We first start with the problem of modeling and understanding of
the temporal characteristics of the motion images in Chapter II. There
we propose some methods of translational motion measurement on a block
by block basis. Then we analyze the effects of uncertainty in motion
estimation and define some parameters which give simple measures of this
uncertainty and are useful for developing data compresion algorithms. We
also propose a method of data compression based on temporal subsampling
and interpolation of the missing frames along the motion trajectory.

In Chapter III we describe two interframe predictive schemes. One

of these schemes is reported in [13], and the other one is a simple
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Frame No. 4

Frame No. 8 Frame No. 12

Frame No. 12 Frame No. 16

Some Frames of the Original Head and Shoulders (on the Left) and Chemical
Plant (on the Right) Data Sets.

Figure 1-3
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adaptive scheme based on the classification of motion. Results for both
these schemes have been presented primarily for the purpose of comparison
with the schemes of Chapter IV and V.

Chapter IV starts with the basic concepts of transform coding.
Then the results of intraframe 2-D transform coding are presented. They
form a good basis for comparing the interframe 3-D transform as well as
hybrid coding against intraframe coding and provide a measure of
compression gain due to interframe redundancy. Finally, results of some
non-adaptive and adaptive interframe transform coding are presented.

Chapter V presents non-adaptive and many adaptive hybrid coding
schemes and forms the major portion of the interframe coding schemes of
this thesis. Adaptive schemes include classification based on activity,
motion measurement and compensation, and temporal subsampling with inter-
polation along motion trajectory.

In chapter VI we present a new method of data compression for
transmission over noisy channels. This consists of joint optimization
of source and channel coding to reduce the overall MSE distortion in the
signal due to quantization and channel noise. Rate distortion curves for
coding of random variables, and one and two dimensional random processes
are given together with experiments on actual image data.

Summary and conclusions of our investigation as well as future
areas of research are reported in chapter VII. Appendix A discusses the
problem of modeling 2-D image statistics together with some results.
Appendix B gives the results of comparisons of various unitary discrete

transforms used in data compression for some 2-D random fields.
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CHAPTER II

MODELING, MEASUREMENT, AND ANALYSIS OF TEMPORAL CHARACTERISTICS

The temporal characteristics of a sequence of images differ con-

i siderably for various applications. The changes between two consecutive
frames basically have two components, deterministic, and random. 1If a
pixel or a group of pixels in a current frame has a correspondence with

t a pixel or a group of pixels in the preceding frame which can be charac-
terized by a deterministic function, then that function is the determin-
istic component and the residual value of the pixel in the current frame

i after subtracting the deterministic component will be called the random
component.

In motion images, some comaion types of deterministic components

1 are, linear translation or 'rotation of objects against a fixed background
in a scene, zooming and panning of the camera, linear and rotational motion
of the camera, etc. In practice, the interframe motion is a combination

4 of the above and various other motions which are not easy to characterize.

4

2.1 Motion Characteristics from Temporal Cross-Sections

In a laboratory the interframe motion can be perceived bv viewing

’
the images as a movie. We have considered an alternative way of present-
ing the data so that the motion can be inferred by looking at the images
R in a stationary mode. Since many image processing facilities (including

ours) do not have the capability to display interframe digital data in
real time, this method is useful in visual representation of interframe

motion by stationary images.
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We select a line in any direction, say 0, in the image plane
passing through the region of interest and store the pixels along that
line within the region of interest as a horizontal line of another image
Ae. Then we select lines from the successive frames at the same spatial
location and store them one below another at vertical sampling intervals
of the images. The resulting line sampled image Ae over the time period
of interest is a temporal cross-section in the direction 8. The ‘inter-
frame motion could then be visually analyzed by viewing several temporal
cross-sections as follows.

If a pixel is undergoing linear translation along the direction §

its path will appear as a curve on the plane of A The slope of the

9°
curve (with respect to the vertical axis) gives the velocity of the pixel.
The pixel intensities on this curve will be constant. In the context of
wave propagation, fluid flow (or more generally for systems described by

hyperbolic partial differential equations) etc., these curves are called

the characteristics. If a region is undergoing linear translation per-

pendicular to 6, the image of that region will appear on A, with a scaling

6
factor along the vertical axis of Ae (the scaling factor depends upon the
velocity of the region). If there is a camera zoom, we will see lines
converging or diverging along the zoom axis. If an object in the region
is rotating, we will see sinusoidal traces. Such temporal cross-sections
have been used earlier for tomography x-ray images in which the object is
rotated at uniform speed (by making an equivalence between time and angle)
and they are called sinugrams [63].

Figure 2-1 shows temporal cross-sections for the Head and Shoulders

and the Chemical Plant images along some spatial directions. From images

ey
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Head & Shoulders Frame 8 Chemical Plant Frame 8
(a) (c)

Temporal Cross-Sections of the
Head & Shoulders Images Along

Temporal Cross-Sections of the
Chemical Plant Images Along

(1) Row #183 (1) Row #170
(ii) Row #185 (1ii) Row #172
(iii) Columm #127 (1ii) Columm #127
(iv) Column #129 (iv) Column #129
(v) Main Diagonal (v) Main Diagonal
(b) (d)

Temporal Cross-Sections of 16 Frames of Head and Shoulders and Chemical
Plant Images. White lines on images in (a) and (c) show the spatial loca-
tions of the cross-sections.

Figure 2-1
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(a) and (b) we see down and up and right to left motion of the face in

the 16 frames of the Head and Shoulders. From images (c) and (d) we see
that for the Chemical Plant images the motion is almost purely vertically
downward. First slow, then rapid, aﬁd jhst before the end it is almost
stationary. We also notice that the slope of the motion trajectories in
d(iii) increases as we move from left to right, which means that the
bottom of the images is moving faster than the top. Since the ground
objects are stationary, it is only possible if the camera is having motion

other than linear translation parallel to the ground.

2.2 Interframe Motion Trajectory Estimation and Modeling:

Let us assume that each point of a continuous image is undergoing
motion and appears at some location in an image at other time instant.
Let u(x,y,t), a zero mean random variable, denote the intensity of the
(x,y) coordinate of an image at time t. Let each image be a sample of a

2-D homogeneous stationary random process whose covariance is given by

Efu(x',y",t)u(xtx',y+y',t)] = 2=l v (2-1)

where E[.] denotes the expectation, l-l denotes the absolute value, and
62 is the variance of u(x,y,t).
Let (x+dx,y+dy,t+dt) be the new location of the point (x,y.t).

Then the trajectory of motion is given by

¢
u(x,¥,t) = u(x+dx,y+dy,t+dt) = Constant. (2-2)
Let the observed value of u(x,y,t) be given by "
v(x,y,t) = u(x,y,t) + n(x,y,t) (2-3) :
« |
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when n is the observation noise which is assumed to be white and indepen-
2
dent of u. Let n have zero mean and variance cﬂ'
Now let us assume that the motion trajectory is estimated piecewise,

i.e., at discrete time instants. Let dx and 3&' be the estimates

of dx and dy, respectively, and

~

dx = dx - dx , dy = dy - dy

be the motion estimation error. Figure 2-2 shows the concept of trajec-
tory approximation without and with motion estimation for the component
of the motion along x-axis.

The motion compensated interframe estimate is given by

vE (x+dx,y+dy, t+dt) = v(x,y,t) , (2-4)

where superscript c¢ denotes motion compensation. The temporal correla-

tion after motion compensation is given by

E[;c(x+5k,y+ﬁy,t+dt)'v(x%&k,y+ay,t+dt)]

c
p _ —
dt E[vz(x+dx,y+dYst+dt)]

E[v(x,y,t)'v(x+3x,y+3&,t+dt)]

E{{u(x+dx,y+dy, t+dt) + n(x#&k,y+§§,t+dt)}2]

1

‘E[{u(x,y,t) +n(x,y,t) } {u(xtdx,y+dy, t+dt) + n(xtdx,y+dy,t+dt)}]

E[u(xt+dx, y+dy, t+dt) s u(x+dx,y+dy, t+dt) ]

= —— -E[0%+R(|dx-dx] , |dy-dy[)]

Y T A S AT v S SIS B T b T w PRI Dt b - o T s, SRR ARSNGB
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Trajectory
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Figure 2-2:
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(b) Motion Compensation

Concept of Piecewise Trajectory Estimation
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or 2 - -
o“E(R(| ax|, | dy[)
p =
dt 02+02
n
E[R(|dx|, |[dy[)]
or = . (2-5)

Par ~ 1402/

n
For small values of dx and ay most image covariance functions could be
assumed to be approximately linear functionsx;flaxl and ]Eyl and the
above could be approximated by
R(E[]dx|], E[|dy|D

= (2-6)
1+Ui/02

Pat

Thus, from the distribution of dx and dy one can obtain the temporal cor-
relation, which may be used for interframe data compression.
We now define another quantity, which we call motion compensated

interframe variance (MCIFV) as

ggt = E[{v(x+dx,y+dy,t+dt) - Trc(x+dx,y+dy,t+dt)}2]
= E[{v(xtdx,y+dy,t+de)} 2 + E[{vC(x+dx,yHdy, t+de)} 2]
- 2E[v(x+dx,y+dy, t+dt) -V (xdx, y+dy, t+dt) ]
= 2(02+0§) - Zpgt(62+0§)
S SR 2<azm§)(1-p§t) (2-7)
or 0% =1 - £S5 /20%4]) . (2-8)

In the absence of motion compensation (2-5) and (2-7) become

E[R(|dx|,|dy|)]

P, = (2-9)
de 1+ oﬁ/o2

X
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2, 2
Ege = 200740 (-0, ) (2-10)

In the above discussion, the observation noise was included to show

how it effects temporal correlation. In our coding experiments and

future analysis, we assume that no observation noise is present.

2.3 Motion Measurement Techniques

In this section we describe methods of measuring interframe mo-
tion for digitized images with particular emphasis on data compression.

First, we approximate the interframe motion by piecewise linear
translation of one or more areas of a frame relative to a reference
frame. The segmentation of an image into areas each of which is under-
going approximately the same linear translation and the measurement of
the magnitude and the direction of the linear translation of each area,
is a difficult task. Cafforio and Rocca [11] describe a method for seg-
mentation and measurement of the linear displacement of a single moving

object in a stationary background. Then extension of the method to more

than one moving object has also been shown. Thus, method becomes increas-

ingly complex as the number of moving areas increases and the size of
the image grow larger. There is another difficulty with such a method of

segmentation if the information of segmentation and linear translation is

to be coded. Coding of segmentation with arbitrary boundaries would require

a complex scheme and, moreover, the length of the code will be large.
A simpler method is to segment an image into fixed size smaller

rectangular areas and to assume that each of these areas is undergoing

independent linear translation. If these areas are small enough, rotation,

zooming, etc. of larger objects can be closely approximated by piecewise

- -

“oma "
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linear translation of these smaller areas. Also, it avoids the problem
of coding the segmentation information. Only the displacement vector of
each of the areas need to be transmitted. Another simplification is to
restrict the motion measurement to an integer number of pixels. This
would give an accuracy up to .5 pixels in the moving areas. Since

in practice the motion is not an ideal linear translation, an effort to
estimate the displacement vector up to a fraction of a pixel will not
result in significant improvement in prediction.

A method which has been used for the measurement of linear shift
between two given images, particularly for aerial guidance, is area
correlation [59,85]. This consists of calculating the area correlation
function of the two images. The location of the peak of the correlation
function gives the displacement vector. The area correlation function is
usually calculated via the fast Fourier transform (FFT). To improve the
accuracy of this method some filtering or preprocessing of the images is
required, which could be done in the spatial domain [59] or the Fourier
domain [85].

For the purpose of piecewise linear translation measurement we
divide an image into smaller rectangular areas, which we call sub-blocks,
and correlate them with the appropriate areas of the reference image.

Let U be an M X N size sub-block of an image and UR be an (M+2p) x (N+2p)
sub-block of the reference image, centered at the same spatial location
as U, where p is the maximum displacement allowed in integer number of

pixels in either direction. Then the area correlation function is given by

£ M N ¢ £
C4,) = ) Ju (m,n)up (mHi,nt)), -p £ 1,3 <p (2-11)
m=]1 n=1

|

4
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where superscript f denotes filtering or preprocessing in the spatial
or Fourier domain. A simple spatial operator which has been found to be

useful in area correlation is a four point Laplacian operator given by

uf(m,n) = u(m,n) - {u(m—l,n)-+u(m+1,n)-+u(m,n—1)-+u(m,n+1)}/4, ¥ m,n.

Let V and Vf be the discrete Fourier transforms of U and Uf, respectively,

then a Fourier domain filter given by

|Vf(m,n)| = |v(m,n)[Y, 0<y<1 (2-12)

where I-] represents the magnitude, has been found to be useful [85].

We have found that the performance of the area correlation method
is poor for smaller sub-block sizes, areas of low spatial activity, and
for sub-blocks not undergoing pure linear translation. We have found
another method which does significantly better under most circumstances
for interframe image motion estimation. This method requires a search for

the direction of minimum distortion (or DMD) and is described below.

Let us define a mean distortion function between U and UR as

M N
D(1,3) = % 21 Zlg{u(m,n) - u.R(m'l-i,n+j)}, -p<i,j<p (2-13)
m=l n=

where g{x} is a given positive and increasing distortion function of x, e.g.

g{x} = x2 would correspond to D(i,j) as mean square error function. The
direction of minimum distortion is given by (i,3),such that D(i,j) is
minimum.

One difficulty with finding DMD as stated above is that it requires

evaluation of D(i,j) for (2p+l) x (2p+l) directions, and even for motions
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up to 5 pixels along either side of the axes, one has to search 121
directions. We have found a solution to overcome the above difficulty

by making an assumption that if

D (q,2) = min {D(i,3)}
° i,]

then for m = i-q, n=j-%, the functions

Dy(Iml,[nl) = D(1,5) ~D (q,8), m20,n2>0
p,(lnl,|n]) = D(i,4) -~ D _(q,2), m<0, <O
Dy({mf,ln{) =D(1,§) ~ D _(q,2), =<0, n<0O
D,([nl,in]) =D(1,9) - D (q,2), m>0, >0

are nondecreasing function of ]m[ and [n[, i.e., for myn,m',n' > 0,

1<k <4,

Dk(m,n) < Dk(m',n'), if m<m' andn<n'.

For g{x} = x% the above is equivalent to the assumption that the covariance
function of images is a nonincreasing function. Most image covariance
functions satisfy this condition, at least in a small neighborhood of the
origin.

Having made the above assumption, we use a 2-D directed search
method, which is similar to the binary or logarithm search [90] in one
dimension. The search is accomplished by successively reducing the area
of search to half or less. Each step consists of searching five directioms,

which contain the center of the area, and the midpoints between the center

~ecay
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and the four boundaries of the area along the x,y axes passing through
the center. This procedure continues until the plane of search reduces
to a 3 X 3 size. In the final step all the 9 directions are searched and
the location corresponding to the minima is the DMD. The algorithm is
given below.

For any integer m > 0, we define

N (m)
M(m)

{(1,1) 5 -m<1i,j<m

{(0,0), (m,0),(0,m), (~m,0), (0,-m)} .

A 2-D Logarithmic Search Procedure for DMD:

Step 1: (initialization)

D(1,3)

w - loage)

t
max~{2,2n -l}

o (i,3) ¢ M(p)

=]
I}

2 =0 (or an initial guess for DMD)

L
L}

wherel_;J is a lower integer truncation function.

Step 2: M'(n) « M(n).

Step 3: Find (1,5)€_M'(n) such that D(i+q,j+2) is minimum. If i=0 and
j=0, go to Step 5; otherwise go to Step 4.

Step 4: q « g+i, L« 2+5; M'(n) <M (n) N (-1,-3); go to Step 3.
Step 5: n « n/2. 1If n=1, go to Step 6; otherwise, go to Step 2.

Step 6: Find (i,3) € #11) such that D(i+q,j+2) is minimum. q < i+q,

2 « 2+j. (q,%) then gives the DMD.

Figure 2-3 1illustrates the search procedure for p=35.
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The figure above shows the concent of the 2-D logarithmic search to find
a pixel in another frame which is registered with respect to the pixel
(1,j) of a given frame, such that the mean-square error over a block de-
fined around (i,j) is minimized. The search is done step by step with
indicating the directions searched at a step number marked. The numbers
circled show the optimum directions for that search step and the * shows
the final optimum direction, (i-3, j+1) in the above example. This pro-
cedure requires only searching 13-21 directions for the above grid as
opposed to 121 total possibilities.

Figure 2-3: A 2-D Logarithmic Search Procedure for the Directiom of

Minimum Distortion.
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2.4 Motion Measurement Results

The method of DMD motion measurement, discussed in the previous
section, was applied to the Head and Shoulders and the Chemical Plant
data. The distortion function g(x) = x2 was used so that DMD would cor-
respond to minimum mean square error in registration of the sub-blocks.

A sub-block size of 16 X 16 was chosen. The sizes 16 X 16 and 32 x 32
were found to be good compromises between accuracy of piecewise linear
translational approximation of the motion, the cost of transmitting dis-
placement vectors, and the complexity of data compression schemes using
motion measurement.

For the multiframe data, when the reference image is a neighboring
frame of the image relative to which motion measurement is done, the
quantity D(0,0) will be called interframe variance. Once the DMD for a
sub-block has been found, the area of the reference image in the direction
of DMD is taken as the motion compensated estimate of the sub-block. By
collecting all the motion compensated estimates from a reference frame,
one obtains the motion compensated reference frame. If (g,%) is the dis-
placement vector of the DMD, then D(q,R) is the interframe variance with
motion compensation and D(0,0) is the interframe variance without motion
compensation for that sub-~block. These quantities for a frame are ob-
tained by averaging them over all the sub-blocks.

When the reference frame is the same as the current image itself,
D(i,j) computed over complete frame gives tue average interframe variance
as a function of uniform linear translation vector (i,j). The above
quantity gives a rough estimate of the average motion between two frames.
Figure 2-4 gives the interframe variance as a function of linear trans-

lation for the Head and Shoulders and the Chemical Plant data.
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Figures 2-5 and 2-6 show the results of motion measurement for the
central 256 x 128 portion of a frame for the Head and Shoulders and the
Chemical Plant data, respectively, relative to the preceding frame. Part
(a) shows the displacement vectors for each of the 16 x 16 sub-blocks.
The success of the DMD motion location method seems evident from Figure
2-6(a). The image is known to have a vertically downward motion relative
to the previous frame as well as a geometric distortion such that the top
of the image undergoes a smaller displacement and the bottom a larger
displacement [67, p. 102]. We can see that mostly our scheme predicts
a successively larger motion as one moves from the top to the bottom,
as expected.

Parts (b) and (c) of Figure 2-5 and 2-6 show the interframe var-
iance (IFV) without and with motion compensation (MC) for various sub-
blocks. For the Head and Shoulders data (Figure 2-5) there are very wide
variations among sub-blocks in IFV without motion compensation. This is
both due to a variation in motion (from nearly stationary to more than 3-4
pixels/frame) and the spatial activity (from a pixel to pixel correlation
of .99 to less than .8) as a result of non-stationarity. After motion
compensation the variation narrows down significantly and is mostly due
to the spatial activity. For Chemical Plant (Figure 2-6) the variation
without motion compensation is not as wide because there areno stationary
areas.

Comparing the average values of the IFV with motion comepnsation
and the entries of Figure 2-4, we can compute an estimate of the average
motion uncertainty. We assume that the motion uncertainty is identically
distributed along both the image dimensions and that, for small motion,

the IFV is a linear function of motion in pixels. With this assumption




- i "

39 !
Covyg gy Couy ) 0wy 0) oy by w0y 0wy 0 Gy 1)U, 1Y :
Lol 9 =y V) L=S$,=1 L U, 1) ( J, ) Cue 1) C Gy 21 C U, 1Y .
Cwy 0) =l 1) t=e,=2) L Ly ) Uy 2) Cue 2) L0y 2) L oL, 2)
Cobe D) Cody ) Loy 1) Uy t) Uny 2y LCuy 2) L Uy 2) L1, 2
Cupy ) tmey Oy (0t 1) (=1y 2 t=1, 2) (=14 7)) ( U, P) L u, 20

t=ly O) t=¢, 0) =1, 1) (=1, 2) =1y 2} L=1, P) t=1, &) (=1, )
§ ‘-’I ) ( 1, ’) A=y ") t=1., ')) (-'ll ;)) (=1, P) (=1, 2) (=1, 2)
L=ly V) (=4, 1) (=cy V) t=cy 2) =1y ?) (=1y 3) (=}, ) (=}, )
U Yy U) (=cy 1) =1, 1) (=Cc¢r @) t Uy $) (=1, @) (=2, 2) (=1, 1
t~1, U) (=4, 1) 1=c, 1) (=c¢y ?) t=cs 2) L=r,y 2) (=¢, ?) (=2, 1)
(=5, V) U ly U) t=cy L) t=3y 1) =5, 1) (=c, ?7) (=3, 2) \=c,
(=1, V) (=e¢y=?2) (=c,=1) (=3, 1) (=5, 1) (=3, 2) (=2, 1) (-1, 0|_
t=cr=1) (=cs=3) (=c,=1) t=3, V) 1=35, 1) (=%, 1) (=¢, O} (=¢, 0)
t=&, 1) (=4, ) L=cy U) (=1, 0) (=5, 1) (=%, ) (=3, 1) (~¢, 0O
L=ty 1) (=4, V) (=4, 1} (=cs D) =5, 0) (=3, 0) (=3, 0) (=2, M
(=3, 1) (=3, 1) (=4, 0) (=¢, 0) (=4, 1) (=4, 0; (=3, 0) (=4, O

(a) Coordinates of the Displacement Vector, (q,2), for Sub-blocks

9,09 11,49 11.9Y 12.06 9.0 6.59 4, 0p .71
13.60 11.217 12.95% 17.8¢ 4SS, 29 9y 46,4014 LYK
In 79 9,80 11.45 191,25 19.9%0 13.69 ¢3.h0 1.117

I.3%¢ 9,57 cY.%u 80,08 - 4R _ 9y vd 7/ ¢Y. 3y hO 20

7.c1 11.5u cloTi 3H, 20 53,09 15.7¢ 41,2y hY_5Y
cB.TH 13,01 v3,3¢ uh,93 %1.97 Y9 .33 53.%y he .25
2b.b5 11.5Y 36P.,75 636,59 332.21 1v71.3% 80, Ry 92.7%
12.25 ¢D. b 26A,B7 245,84 64T, 04 BeS.64 1b60.ho 10T.8%5
11.8% 15.61 dR hy 419,11 Tel,ul 949,13 18,15 43 .96
lu,.d4e 13.99 (95.77 430,9¢ 358,.Rs o5, 7u 09,6y 14,75

19,75 71.95 tl.29 667,21 16410,71 368,27 c4.%0 7.84
c?.43 6357 .8 994,14 298,97 AbY,f4 135,79 40,489 2R 11
Held, 1l cat a4y 1.80 14ub 02 1614,05 eR. T BpHl,.Pl T7r2.14
l.60b 1.9/ 1 .Y9¢ 37.86 ¢80%,94 1Bbb,. %Y 990,3/ htT.AY
1.hS 2.u¢ 1.54 cld, bbb cdeli Vs 912.05 ¢012.%¢ “7.64
1.75 1,74 2,00 441,95 To0,0% 2Pub,Y% 15599.7]) 1.33
(b) IFV Without MC, D(0,0), for Sub-blocks. Average for Frame =156.70
Y,05 11,49 11.9% 9,490 9,05 6.59 4,00 S.1¢
138,60t Y9,.53 10,34 17.1u 4l.724 19,96 53,44 1.80
11,91 5,08 10.1¢ c? 8 3.7 °.51 3.9 h.9%
7.5 Hotle 12 .84 16,69 13,91 12.0¢2 10,65 15,65
(.7} 1U.4) 13.7¢ 14,60 14,0 14,7y 11,490 14,09
il.ue 10 ,.%0 19.3% 17.25 1°.79 13,596 10,64 6~ 85
Jo.00 Y./ 52,721 ¢S, 0y rl k1] 16,94 11 .R¢ 12,.58%
11,40 .oy 4N, en ¢el.0c sh.ty 99,1 11.30 10,03
71,80 13,41} 14.9¢ 1R, 9y [N Y 159.33% 16, Ko 4, ,Qq
9, u/ v, 9¢ cbJ e 32.91) 15.4¢ 10,72/ h,ho 9.8t
LINCKT 7,54 1A, 5y 17 ,HY ik, 3% “P P} 6.7 S, 7u
12,07 10.71 e1.5% 71.91 el b el.Py Kooy 15,00
Ji.1n Y.51 1.19 4, 3 9.3 b,y 15,07 N\t _qp
1.0 Y 1.04 7.%u 23,65 YU R 17,54 17.67
1.1v 1.35 JHU 36,174 Teh, 6o LY e .1 .
1.54 1,17/ ML SU ke TIT.es Nul Ta eHLNY .94 .

(c) IFV with MC, Do(q,l), for Sub-blocks. Average for Frame =15.24

Figure 2-5: Results of Motion Measurement Relative to the Previous Frame
on a Portion of Head & Shoulders Frame No. 8 for Sub-block
Size of 16 x 16.
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(=4, 0) (=4, 0) (=4, 0) (=4, 0) (=4, 0) (=4, 0) (=4, O) (=0, )
(=4, V) (=4, 0) (=4, 0) (=4, 0) (=4, V) (=4, 0) (=4, 0) (=u, 0}
(a) Coordinates of the Displacement Vector, (q,%), for Sub-blocks
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(c) IFV with MC, Do(qvl), for Sub-blocks. Average for the Frame = 139.34

Figure 2-6: Results of Motion Measurement Relative to the Previous Frame

on a Portion of Chemical Plant Frame No. 12 for Sub-block Size
of 16 x 16,




we compare the IFV with the diagonal entries of Figure 2-4 and find the
average motion by interpolation. For example, the average IFV with motion
compensation for the Chemical Plant frame No. 12 is 139.34 (Figure 2-6(c)).
, Comparing this value with the diagonal entries of Figure 2-4(a) we find
that it lies between 0 and 572.96. Thus, by interpolation we obtain an
average value of motion uncertainty after motion compensation as (.25,.25).
Similarly, for the Head and Shoulders data we find it to be approximately
(.1,.1). Observing that for the Head and Shoulders data more than half
the image area is nearly stationary, the average motion uncertainty in the
moving areas can be approximated as (.25,.25) pixel. This means that the
DMD method indeed measures the motion with an accuracy up to the nearest
integer pixel most of the time. Thus, the absolute value of the motion
uncertainty in the moving areas can be modeled as uniformly distributed
between 0 and .5 pixel along each of the dimensions, giving an average
value of .25.

Table 2-1 shows the improvement in the interframe prediction due
to motion compensation. With no motion compensation,the prediction of a
pixel is the value of a pixel in the previous frame, having the same
spatial location whereas with motion compensation, the predicted value
comes from the previous frame pixel in the direction of minimum distortion.
Note that the variance of this error is nothing but IFV. An interesting

and important observation is that there is a wide frame to frame variation

in IFV without motion compensation due to variation in motion activity as

a function of time (4.64 dB between Head and Shoulders frames 6 and 7).

P

After motion compensation this variation becomes negligible. Showing

that the uncertainty in motion prediction is identically distributed over
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TABLE 2-1

IMPROVEMENT IN SNR OF INTERFRAME PREDICTION ERROR (IFPE) DUE TO MOTION
COMPENSATION. MOTION MEASUREMENT WAS DONE ON 16 x 16 SIZE SUB-BLOCKS

USING DIRECTION OF MINIMUM DISTORTION SEARCH WITH MEAN SQUARE CRITERION.

DATA FRAME SNR OF IFPE IN DECIBELS
SET No.
Without Motion With Motion
X ., Improvement
Compensation Compensation
6 29.90 35.88 5.98
HEAD 7 25.26 35.68 10.42
& 8 26.18 36.30 10.12
SHOULDERS 9 26.03 36.26 10.23
CHEMICAL 11 16.66 26.77 10.11
PLANT 12 16.90 26.69 9.79
13 17.53 26.56 9.03
TABLE 2-2

IMPROVEMENT IN SNR OF INTERPOLATED FRAME (FROM THE PRECEDING AND THE
FOLLOWING FRAMES OF THE ORIGINAL DATA) DUE TO MOTION COMPENSATION.

—

INTERPOLATED

SNR OF INTERPOLATED FRAME IN DECIBELS

FRAMF. Without Motion With Motion 1
c. mprovement
Compensation Compensation
HEAD & SHOULDERS
FRAME {8 30.48 38.61 8.15
CHEMTCAL PLANT
FRAME # 12 19. 34 29.56 10.22

—
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different frames even though the motion itself is not. Figures 2-7(a)
and 2-8(a) show interframe prediction and error images.

The error images shown in Figures 2-7 and 2-8 and elsewhere show
the absolute value of the errors amplified and truncated to the largest
value of 255. The darker points show larger errors. The amplification
for the Head and Shoulders data is ten times and for the Chemical Plant
data it is five times. Only about three-fourths portion of the error

images have been shown for these data sets.

2.5 Frame Repetition and Interpolation Along Motion Trajectory

Frame skipping is one of the simplest methods of data compression

for interframe motion images. For simplicity of discussion, we assume

skipping of every alternate frame. However, the discussion could be

easily extended to other cases. A skipped frame is generally reproduced

by either repeating the preceding frame or by interpolation from the pre-
ceding and the following frames. Both these methods have serious effects
on the quality of motion reproduction. The former results in jerkiness

in the reproduction of the motion and the latter in blurring of the moving
areas. This is evident by looking at part (i) of Figures 2-7(b) and 2-8(b).

Let U, be a sub-block of the (2k)th frame where frames 2,4,... ,

2k
2k,... have been skipped. Then U;k’ the reproduced value of Uzk’ is ob-
tained (without motion compensation) as follows.
Frame Repetition:
| * (m,n) = (m,n) (2-14)
u: u2k m,n u2k_1 m,n .
{ s
Y
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Frame Interpolation:

u;k(m,n) = %{UZk_l(m,n) + u2k+1(m,n)}. (2-15)

The disadvantages of simple frame repetition or interpolation can 1
be overcome by using motion compensation, i.e., making the prediction or
interpolation along the motion trajectory. Using motion compensation

(2-14) and (2-15) are replaced by t
uy (myn) = uyy 4 (mhq,nHL) (2-16)

and
u;k(m,n) = %{uy, _ (mhq,n#) + Ugy4p (g ' sm¥e )} (2-17)

respectively, where (q,%) and (q',2') are the coordinates of the
displacement vectors of U2k relative to the preceding and the following
frames, respectively.

The improvement in SNR of the interframe prediction error shown
in Table 2-1 and Figures 2-7(a) and 2-8(a) is nothing but the improvement
due to frame repetition along motion trajectory compared with a simple
frame repetition. Table 2-2 and Figures 2-7(b) and 2-8(c) show the
improvement due to the frame interpolation along the motion trajectory
compared with a simple interpolation along the temporal axis.

Thus, we see that the approximation of the motion by linear trans-

lation, on a sub-block by sub-block basis, gives excellent results for . b
the video motion images considered. These results could be used with
interframe predictive coding schemes, such as DPCM, and still better
with hybrid coding schemes (as discussed in chapter V) with a great im-

provement in coder performance. The results of chapter V show an
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improvement in compression gain by a factor of two when motion compen-
sation and frame interpolation along motion trajectory are used. Even
higher gains are expected with further increase in the sampling interval
along the temporal axis (i.e., skiﬁﬁing more frames) and interpolation of

missing frames along motion trajectory.
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CHAPTER III

INTERFRAME PREDICTIVE CODING

In section 1.3.1 we had briefly discussed several predictive
techniques. One of these techniques, called frame replenishment with
cluster coding, is described in the following section. In section 3.2
we report a simple predictive scheme which we call adaptive classifica-
tion prediction. This has been developed primarily for comparison with
other schemes. These schemes have been simulated and applied on the

Head and Shoulders images.

3.1 Frame Replenishment with Cluster Coding

This technique was developed at the Bell Telephone Laboratories
and is described by Candy, et al. [13]. We have implemented it for com-
parison purposes. This technique mainly consists of transmitting the
addresses and quantized amplitudes of the "significant" interframe dif-
ferences of the consecutive frames. The interframe difference at any pixel
location is classified as significant when its absolute value exceeds a
fixed threshold. The experimental observation that most of the signifi-
cant interframe differences occur in clusters along any frame line, moti-
vates the fact that the addresses of the significant interframe differences
could be efficiently coded by transmitting the beginning address of a
cluster and a cluster terminator code. It is obvious that most of the
clusters will appear in the areas of an image consisting of moving edges
or objects. This implies that the technique would generate a variable
bit-rate for each frame, depending upon the activity and motion in the
frame. Thus, transmission of the data on a channel with a fixed bit-

rate would necessitate a buffer.

e .

e
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To avoid an arbitrarily large buffer requirement, some controls
(not without the penality of higher distortion), which limit the buffer
requirement to a given buffer length, are applied. In our simulations we
keep the buffer capacity equal to the average number of coded bits (de-
sired bit rate) per frame. All controls are determined by the number of
bits residing in the buffer. Figure 3-1 describes the buffer control
levels for this scheme.

If the contents of the buffer fall below point A, the next line is
transmitted as it is, using 8 bits/pixel, to prevent buffer under-flow.
When the buffer contents exceed point C, the frame differences in a cluster
are subsampled, i.e., every other frame difference is transmitted and at
the receiver the missing value is interpolated. The sub-sampling continues
until the buffer contents fall below point B. When the buffer contents
exceed points C, D and E, the threshold for classification of signifi-
cant changes is increased successively to lower the number of significant
changes. When the buffer is filled beyond point F, coding is stopped for
one frame period and sub-sampling is continued for the next frame period.
This is done to avoid the buffer overflow.

In the beginning, the first three lines of the first frame are
force updated, i.e., they are transmitted as 8-bits/pixel. In the next
frame, the next three lines are force updated and so on, except when the
coder is in buffer overflow condition. At this rate a complete frame is
refreshed or updated approximately every 3.5 seconds for 24 frames/sec.
transmission. Nine-bit codes are used to designate starting of a new
frame, starting of a new line, and the starting addresses of the clusters

in a given line. Removal of isolated points of significant changes,
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and bridging of the clusters which are very close are done to reduce

t:e bit-rate. For further details, see [13].

3.2 Adaptive Classification Prediction Coding

As pointed out in the last chapter, if a point moves more than one
and if its direction of motion is unknown, then (for highly correlated
images) spatial prediction performs better than pure temporal prediction.
On the other hand, for stationary pixels a temporal prediction is
preferable.

We have developed a very simple criterion to classify a pixel as
stationary or slowly moving (about 1 pixel/frame in any direction) or
rapidly moving relative to the previcus frame. This could be easily
implemented online and is based on the interframe differences of its
nearest neighbors in the present frame as shown in Figure 3-2. Only in
the case of slow motion do we approximate any kind of motion or change by
a translatory motion, and we search its direction assuming that it came
from one of the nearest neighbors in the previous frame as shown in
Figure 3-3. The direction of the rapid motion is of no consequence to
us as we rely on spatial prediction in this case. A block diagram of
the scheme is shown in Figure 3-4.

Let Ue,1, ] denote the intensity of the jtM pixel on the ith scan
line of the kth frame and u;,i,j be 1its reconstructed value at the

receiver with no channel errors.

3.2.1 Motion Predictor ~ As established in the last chapter, the

motion of a pixel is quite close to that of its nearest neighbors and
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Figure 3-4: An Adaptive Classification Prediction Scheme.
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interframe difference is a good measure of the extent of the motion.
t In order to classify motion we measure, over a neighborhood of the pixel,
a weighted sum of the absolute interframe difference. A small neighbor-

{ hood would be sensitive to the quantization error, noise, etc., and a

¢ large neighborhood requires more computations and would not respond
quickly to the changes in motion. Keeping that in mind, the neighborhood
of Figure 3-2 was chosen. Also we have chosen the absolute value of the
! interframe difference signal as opposed to its square to reduce the sensi-
tivity to large quantization errors. Based on these criteria, we define
a neighborhood activity index Ak,i,j as
1
a * %*
. = w . ., - u . . 3-1
Akai’J (X’yX)ENX,Yluk,lﬂ.J“‘Y k-l’l"‘x’J'Fyl ( )
| where wi y are the weights and # the pixel neighborhood, and
b
a
>
Yxy 2 0 (3-2)
1 W= {(0,-p);(-1,-1);(-1,0);(-1,1)} (3-3)
and
8 ( 2, 1if coder is in 2:1 sub-sampling mode
p= (3-4)
1, otherwise.
] Then woy 3 is assigned to one of the three classes——cs (stationary),
44 ’

Sy (slow motion) or cr (rapid motion) as follows.
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" Cg» if Ak,i,j S_Ll or Ak,i,j 5_L2 and uk,i,j-l € ¢g

€ .
Y, 1,3 ey LAy g g <Ly or A g

Cy? otherwise

IA

L3 and uk,i,j-l € R

where L, < L

1 <L

9 3 <L, are predetermined thresholds. Note that we have

chosen elastic thresholds between the classes. 1In order to jump from Cg

to Cy OF cp we have a higher threshold (LZ) than to jump from cy OF g

to cs, Ll' The converse is true for transition from and to class e

This reduces the semsitivity of classification to quantization and

other noise.

3.2.2 1Intensity Prediction - Based on the classification of

motion, the prediction of u oy 3’ denoted by Gk i,5° is given by
’ ’ , 1]

* .
( Ye-1,1,9 ° Hou,i,5 €S
*

%15 =1 %, 1,4-q,5-r0 1T Y1, © oM (3-5)
p % * _ P % T
P o1, 5mp +P1%,1-1,5 TP PP 11,507 1 Vs © R

where pi and pj are one step correlation coefficients along i and j res-

pectively, and the pair (q,r) € /{ 1is chosen so as to minimize

B 1,3 (@) = v

v | - o |
xden Y Kk, d+x,j+y ~ Uk-1,i+xtq,jyr!?
where

w >0 (3-6)
Xyy —

and

M = {(s,t); s,t = -1,0,1; (s,t) # (0,0)}
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and M and p are given by (3-3) and (3-4). The above simply means that

for class cy we search the direction of the nearest neighbors of

Figure 3-3 which minimizes the index B Note that for a pixel clas-

k,1,3°
sified as having rapid motion we have used a 2-D causal spatial predictor

based on the separable first order Markov covariance model.

3.2.3 Subsampling - The fact that in moving areas spatial

resolution can be traded off for temporal resolution [57] could be
utilized to achieve more compression by subsampling the images in the
moving area in conjunction with the buffer contents. The intensity of

the subsampled pixels is obtained by linear interpolation.

3.2.4 Quantization and Coding — The prediction errors for dif-

ferent classes are quantized using different quantizers. In order to
achieve a rate very close to the entropy of the quantizer output symbols,
a group of quantizer symbols of fixed length is coded at a time and a

binary code is generated using the Huffman coding algorithm [1].

3.2.5 Buffer Length Control - To limit the buffer requirement to

a reasonable size, the quantizer levels are changed as a function of the
numbers of bits residing in the buffer. The levels of the quantizers
are changed so as to decrease the entropy of the output symbols as the
buffer contents increase and vice versa. On the average the entropy of
each of the quantizers is matched to that of the desired transmission
rate (or compression ratio). To prevent buffer overflow or underflow,

we use the same technique as used in [12] and also described in section 3.1.

3.2.6 Simulation Parameters - We have simulated the above scheme

to achieve a compression ratio (C*Re) of 16 or a bit-rate of .5 bit/pixel

A,
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for the Head and Shoulders data. The buffer length was chosen to store one

coded frame at this rate, i.e., .5 X 256 x 256 bits. The weights of

a

(3-2) and (3-6) were all selected to be unity except that Y -p
9

was chosen
to be two. This was done since this is the only pixel corresponding to
the current line and is known to be not interpolated. Of the rest three
pixels,which belong to the previous line,as many as two could be inter-
polated pixels, which have higher errors.

The value of the classification thresholds were determined experi-
mentally to minimize the prediction error (for each class) and were found

to be L, = 10, L

1 5 = 14, L3 = 50 and L4 = 70. However, they could also be

found by finding the expected value of Ak,i,j for transition from one
class to another. This would require the knowledge of covariance function
of the image and the probability distributions of the interframe difference
signal, the interframe motion and the quantizer noise.

To exchange temporal and spatial resolution, a 2:1 subsampling was

done for classes Cy and g

For simplicity, the values of pi and pj in
(3-5) were chosen to be unity. The buffer control levels are shown in
Figure 3-5.

The input and output levels of various quantizers are shown in
Table 3-1. We have chosen a set of alphabets C- {cl,cz,c3} for the
output of the quantizer QS. As we are doing a 2:1 subsampling for

classes and c¢,, we have decided to choose the symbols for Q, and Q
M M R

R
from [X C to simplify the design of the binary encoder. Wherever there

are more than one symbols available for an output, only one is sent at a
time and each takes its turn in a fixed order, e.g., the code clcllclc3

means that the first time c is transmitted and the next time clc3 is

1%1
transmitted. Then again the cycle is repreated. At the decoder, both of

o
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these codes are decoded into the same output level of the quantizer. The
entropy of the symbol set is .48 bits. We code a group of four alphabets

at a time using the Huffman code [1] and achieve an average rate of .52 bit/
alphabet, which is very close to the entropy and also our desired bit.

rate of .5 bit/pixel, as each pixel generates one alphabet.

3.3 Results and Comparisons:

Table 3-2 shows the performance of the frame replenishment cluster
coding scheme for the Head and Shoulders data. It is assumed that the
first frame is available without any distortion at the receiver as well
as the transmitter. The stationary area corresponds to those pixels of
a frame which are classified as insignificant changes from the previous
frame and the moving area corresponds to the significant changes. Buffer
overflow area corresponds to the area of a frame which is repetition of
the previous frame after the buffer contents exceed point F in Fig. 3-1.

Figures 3-6(a) and 3-6(b) show the resulting images at bit-rates
of .5 bit/pixel and 1 bit/pixel, respectively, assuming no. transmission
channel errors. As is evident from Table 3-2, the scheme performs
poorly at .5 bit/pixel since about 607 of the time the contents of
the previous frame are repeated. Thus, the motion would be reproduced
with jerkiness. The temporal lag is evident from Fig. 3-6(a) where the
areas of the image correspond to different frames in the original data.

The performance of the adaptive classification prediction scheme
is shown in Table 3-3 and Figure 3-6(c). Although the SNR is much better
than the cluster coding scheme, there is visibly poor spatial resolution

in the moving areas.
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TABLE 3-2

FRAME REPLENISHMENT CLUSTER CODING RESULTS FOR HEAD AND SHOULDERS DATA.

.5 Bits/Pixel 1 Bit/Pixel
% OF % OF
IMAGE AREA TOTAL AREA S/N TOTAL AREA S/N
Stationary 29.40 38.6 dB 68.66 39.09 dB
Moving 11.38 31.19 4B 23.61 30.14 dB
Buffer-Overflow 58.52 25.90 dB 6.61 25.48 dB
TOTAL 100.00 27.88 dB 100.00 33.0 dB
TABLE 3-3

ADAPTIVE CLASSIFICATION PREDICTION CODING OF HEAD AND SHOULDER DATA,

BIT RATE = 0.5.

% OF
IMAGE AREA TOTAL AREA S/N
Stationary 55.05 39.09 dB
Slow Motion 37.15 33.97 dB
Rapid Motion 7.76 27.77 dB
TOTAL 100.00 34.75 dB

wangge + w4
)

L emm e
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(a) Frame Replenishment Cluster Coding.
Bit~rate = .5 bit/pixel, SNR = 28.23 dB.
m— -

(b) Frame Replenishment Cluster Coding.
Bit-rate = 1 bit/pixel, SNR = 34.19 dB.

(c) Adaptive Classification Prediction Coding.
Bit-rate = .5 bit/pixel, SNR = 34.35 dB.

Results of Interframe Predictive Schemes for Head and Shoulders Frame 8

Figure 3-6
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The schemes described above have the advantage that they require
a very low storage capacity for the image data, about 1 image line, as

well as have low computational complexity.
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CHAPTER IV

TRANSFORM CODING TECHNIQUES

The theory of transform coding of images can be found in [28,31,40,
58,77]. For a brief description see section 1.3.

Figure 4-1 shows a block diagram of a simple 3-D transform coding
scheme for multiframe images. For practical reasons of data manipulation
and management (in hardware or software), the 3-D data array is first
divided into smaller arrays called sub-blocks. Let U be one such array
of size L X M ¥ N and let V denote its transform. Since for a sub-block
size of L X M X N, L image frames.need to be stored, the data array con-

taining L frames will be referred to as a block. Hence further division

of this data has been referred to here as a sub-block. The three dimensional

discrete unitary linear transforms that we consider are separable in the
three dimensions, analogous to the three dimensional Fourier transform of

a continuous function f(x,y,z), viz.,

3 (wy x+w, y+wy 2)

F(wl,mz,w3) = [ J f(x,y,z)e dx dy dz
-0 =00 =00

[w
[ f(x,y,z)e_wlxdx e_mzydy e Y%z .
-0

hH

For the discrete array U, {u(k,1,j); 1 < k<L, 1 <1< M, i< j<N,

the analogous 3-D transformation is
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L M N
v(2,mn) = ) ] zu(k,i,j)vL(z,k)vM(m,i>?N<n,j)
k=1 i=1 j=1
1<2<L,1<m<M, 1<n<N (4-1la)

where WM is an M X M transform matrix for an M X 1 vector. Because of
the separability of this transformation in each dimension, (4-la) can be
written as a sequence of three one dimensional transformations

L

vi(2,1,3) = ] ul,1,)¥ (LK) 1<i<M, 1<j<N, 1<2<L
=1 L T -7 o

M
vy(2,m.3) = .2 v, (2,1,1)¥, (m,1)5 1 <

<2 <L,1<j<N, 1<m<M
i=1
(4-1b)
N
va(@,mn) = ] v, (4,m,$)¥(n,§); 1< 2 <L, 1<m<M, 1<n<N
j=1
v(2,m,n) = v3(£,m,n)

For an arbitrary ¥, the number of operations would be LMN(L4+M+N). If
Y is a fast transform, such as the fast Fourier transform (FFT) [8) , then
the operation count is reduced to the order of LMN‘logz(LMN).

Each sample of the transform array, called transform coefficient,
is generally quantized independently by a zero memory quantizer. The
overall coder efficiency is maximized (with respect to the mean square
error criterion) when the transform coefficients are uncorrelated (which
is a property of the optimum Karhunen-Loeve transform [40,76]). The quan-
tizer design depends on the probability distribution of the transformed
samples. Experimentally, for the Cosine transform, the samples v({,m,n)
have been modeled quite well for image data by the Laplacian density

model, Roese [67],
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.
_ L _ V2 x-u]
p{x) = N eXP<' 5 }

(4-2)

where 11 and 7 are the mean and the standard deviation of the random var-
iable x. Many times, the first sample v(1,1,1) is modeled by the Rayleigh
density [67]. This is because image data is often non-negative and,

for many transforms, the first sample is proportional to the average (or
the so called d.c.) value of the data and is therefore non-negative. Hence
v(1,1,1) would be a non-negative random variable. However, if the data has
been modeled by zero mean random process (or has been converted to be such
by subtracting the mean from the data) then the Laplacian density model

for v(1,1,1) suffices. In the sequel, without loss of generality, we

will assume u(k,i,j) and v(%,m,n) to be zero mean random variabies. Let

oi(ﬁ,m,n) 2 E[vz(l,m,n)] (4-3)

be the variance of the transform coefficient v(,m,n). 1In Fig. 4-1, if

there are no channel errors in storage or readout of the quantired samples,

we will have ¥*(%,m,n) = v*(2,m,n). The average mean square distortion

between the input and output is defined as

1 L M N

p =L TR (k,1,5) - ulk,i,i)}°] . (4=4)
LMN k£1 121 it

Since the transformation is unitary, Parseval's relation implies

b= iﬁﬁ 11 T EG*@R,mn) - v(R,m,m}Y] .
£ m n

and in the absence of channel errors

L Lyab el -
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D= ﬁlﬁi I 1 Eflv*@,mmn) - v(,m,n)}?] .
fm n o .

If we define the quantizer characteristics as

q(x) = mean square quantizer error for a umnit (4-5)
variance input random variable quantized

to x bits

we can write

1

D===11 I olmnat, ), (4-6)
2m n

2,m,n
where bg mn = number of bits allocated to the coefficient v(2,m,n).
bl E

Now, if the total number of bits available is fixed, i.e.,

1Yy by m,n = LM® (4-7)
£ mn
where b = average bit rate in bits per sample, the overall distortion is

minimized by finding the optimal bit allocation among the various samples

such that the distortion D given by (4-6) is minimized. Since

b > 0 (4-8)
L,myn —

(4-6) is to be minimized subject to the constraints of (4-7) and (4-8).

Another desirable constraint is to require

bl,m,n = integer . (4-9)

The above minimization can be performed by a simple integer programming

algorithm, originally due to Fox [89]. Jain and Wang [86] have applied

P
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this algorithm for finding integer bit allocation in hybrid coding of
intraframe images for several practical quantizers. (For other methods
of approximate bit allocation see [28,70]). Once the bit allocations are
known, each transform sample v(,m,n} is quantized to bﬁ,m, bits.

As we can see from the above analysis, a transform coder design
requires the knowledge of the transform coefficient variances, Oi(l,m,n).
For a simple transform coding scheme with a fixed quantizer for each of
the transform coefficients, the multiframe images are assumed to be wide
sense stationary (although, as pointed out in chapter II, this is a very
poor approximation for the motion images). With this assumption, it can
be easily seen that Oi(l,m,n) can be obtained by the knowledge of the co-
variance function of the array U (see [49,67]). One approach has been to

model the covariance by some simple function, e.g., as a product of first

order stationary Markov process covariance models [67] defined by

>

c E{u(k',i",3") -u(k'+2,1 +m,j "+n) ] (4-10a)

2,m,n

- Oz.pllfi .pliml .pgnl (4-10b)

where 02 is the variance of the data sample u(k,i,j) and the Prs Py» and pj

are the one step correlation parameters along the indices k, i, and j,
respectively. An alternative approach is to measure the covariance func-
tion on a portion of the data [49] similar to the intraframe case as in
(4-5) and use these for the rest of the data. However, the transtorm
domain statistics, i.e., Oi(l,m,n), can be directly estimated from the
transform coefficients., In this case the estimate is given by

oi(l,m,n) = ﬁL ) vz(l,m,n) 1<2<L,1<m<M, . <n<N, (4-11)
oV
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where Bo is the number of data sub-blocks used in the calculation of
(4~11) and the summation is taken over all these sub-blocks.

The array of quantized transform coefficients, V*, is encoded and
transmitted or stored. Its received value, G*, is inverse transformed
(by interchanging U and V and replacing ¥ with W*T in (4-1)) toobtain the
reproduced value of U as U*. 1In the coding experiments of this chapter and

the next chapter we assume the channel to be noise free, i.e.,

For the discussion on coding for noisy channels, refer to chapter VI.

4.1 Adaptive Interframe Transform Coding Schemes

In the transform coding scheme discussed above, the multiframe
images were modeled as a 3-D stationary random process (in the wide sense).
In reality, the multiframe motion images are nonstationary, in general.
The nonstationarity exists in the spatial as well as the temporal dimen-
sions, and the latter appears t» be more severe between the two.

This is because the temporal direction is deterministically related
(except for the noise due to camera & digitization) to the spatial coor-
dinates as discussed in chapter II. Hence, a stationary random process
characterization is not a realistic assumption. The nonstationarity in
the spatial domain is mainly due to the presence of sharp object edges
(or features) within an image frame.

The encoding of multiframe motion images with the assumption of
stationarity, therefore, results in large degradations in the sharp
features within a frame, and in the reproduction of motion features.

Usually, these are the more desirable features.
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Some researchers have developed methods of coding single frame
images by separating the nonstationarities (such as edges) and coding
them separately [75,83]. The residual image (after separating or sub-
tracting edges) is then modeled accurately by a stationary process and
can be coded using a simple transform coding scheme such as described
above (the intraframe or 2-D transform coding is a special case of the
interframe scheme with L = 1). However, these methods result in increased
complexity and their extension to the interframe (or 3-D) transform cod-
ing seems difficult.

We have investigated the possibility of some simple extensions of
transform coding which would improve its performance by accounting,
in some way, for the nonstationarity. We have found that the concept
of "activity index" proposed by Gimlet [21] for intraframe transform
coding can be extended to the interframe coding by finding a modified
activity index. As we have seen in chapter II, the interframe variance
(or IFV) is a good measure of the combined spatial and temporal activity
between two successive frames of multiframe motion images. Thus, an
average of the IFV measured over a sub-block between each pair of succes-

sive frames, given by

1 L M N )
a 77 T {uk,i,3) - uk-1,1i,9)} (4-12)

L-DMN 4 25 521 521
could be used as a good measure for the activity index.
In [21] the adaptation is achieved by classifying a two dimensional
sub-block into one of the 4 classes, based on the value of the activity
index (which is nothing but the variance of the sub-block), by a threshold

classifier. The thresholds are chosen such that each class has equal
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occurrences in an image frame. Each class is assigned different but
fixed number of total bits (obviously a class having higher activity
index is assigned more bits). Thus this scheme operates at fixed bit-
rate per frame. We would like to point out that what is essentially
being achieved by this adaptation is to approximate a nonstationary pro-
cess by 4 piecewise stationary processes. Also note that for each class
the thresholds would vary from one image frame to another with the distri-
bution of motion. Thus, making the piecewise stationary approximation
poorer because, for the same class, the range of activity index is no
longer fixed. Therefore, we have chosen fixed thresholds for classification.

We also choose 4 classes. The selection of number of classes is a
trade-off between performance and complexity. The classification for
each sub-block is coded using 2 bits. For each class separate bit-rates
and statistics are used. Once the statistics for each class are known (or
measured) the bit-rates could be determined from the distortion-rate
curves by fixing the distortion level for each class. The activity index
(or IFV) thresholds for classification depend on the nature of the data
and the sub-block size. Their suitable values can be found from the histo-
gram of the activity index.

In the adaptive shceme described above, both the bit-rate and sta-
tistics were adapted for each class. However, if desired, one of them
could be kept constant at the cost of only a partial improvement over the

usual (or non-adaptive) scheme.

4.2 Experimental Results

The adaptive and non-adaptive interframe transform coding mehods

of the previous sections as well as the usual (or non-adaptive) intraframe

=
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transform coding were applied to some of the data sets described in
chapter 1I.

Due to the superior performance of the Cosine transform for data
compression of highly correlated data (see appendix B and [33,49,67]) we
have chosen the transform matrix Y throughout this work as the discrete

Cosine transform (or DCT) matrix. (see Ahmed et al. [2]) defined as

VI »1=1,1<3j<M
Y, (1,3) = . . (4-13)
M 27H cos <2 ;;(1'1) , 2<i<M 1<j<H

4.2.1 Head and Shoulders Images - All the three methods are com-

pared for this data set. Since it coutains motion images with motion
being localized in certain areas of an image frame, it is a good candidate
for comparing the effect of adaptations. For interframe (or 3-D trans-
form) coding a sub-block size of 16 X 16 X 16 was chosen as in [67]. To
compare the performance of interframe and intraframe schemes, two sub-
block sizes for intraframe transform coding were chosen. The first,

16 x 16, is used to compare the contribution of the temporal redundancy

exploited by the interframe scheme. The second size, 64 X 64, is used to

have the same number of samples in the intraframe and interframe sub-blocke.

Since the performance of a scheme also depends on the knowledge of the
statistics, some of the statistical models are also compared.

For intraframe coding we compare three statistical models--{(i) Sep-
arable covariance model of (A-1) with oy = pj = ,95; (i1) Measured sta-
tistical model, which is obtained by suppressing index % in (4-11), given
in Table A-1; and (iii) Isotropic covariance model with correction given
in Table A-4 (see appendix A for discussion on modeling intraframe

statistics).
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Table 4-1 gives the performance of these models for a sub-block
size of 16 X 16. As expected, the performance of the separable model is .
the worst and that of the measured statistical model is the best.

The isotropic model with correction is closer to the measured statistical
model at low bit-rates and in between at higher bit-rates. Also, the
superior performance of the measured statistical model increases with

the bit-rate. This is also expected, since at lower bit-rates only

the low order (or low spatial frequency) transform coefficients are
transmitted (from the distortion-rate considerations) and usually the
simple parametric models such as the separable and the isotropic (without
correction) do well in predicting their statistics (as can be seen by
comparing Tables A-1 and A-3).

Table 4-2 shows the performance of the intraframe scheme for the
sub~block size of 64 X 64 for two of the models (except the separable,
which is expected to do relatively worse for higher sub-block size). We
notice an improvement between 1-2 dB for the isotropic model and about
3-4 dB for the measured statistical model over the 16 X 16 case. Thus,
the relative superior performance of measured statistical model increases
with the increase in the sub-block size. This again is expected.

Figures 4-2 and 4-3 show some of the images corresponding to frame
#8 resulting from the intraframe transform coding. In general, the rela-
tive visual quality for various models and array sizes is in agreement with
the mean square performance. At low SNR (below 35 dB), the noise in the
background areas is quite visible in addition to the blurring of sharp
features (or edges). For high SNR (above 37 dB) the visual quality

1s good.
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TABLE 4-1

| SNR FOR NON-ADAPTIVE INTRAFRAME COSINE TRANSFORM CODING OF THE HEAD
AND SHOULDERS IMAGES FOR THREE STATISTICAL MODELS. SUB-BLOCK SIZE =

16 x 16.
STATISTICAL MODEL }
S- BIT-RATE ISOTROPIC MEASURED
N. PER PIXEL SEPARABLE WITH CORRECTION STATISTICS
1 .25 28.02 4B 29.76 dB 30.29 dB '
) /
2 .50 30.03 dB 33.41 dB 34.16 dB
3 1.00 35.47 dB 37.41 dB 39.63 dB
4 2.00 40.92 dB 42.38 dB 45.52 dB

TABLE 4-2
’ SNR FOR NON-ADAPTIVE INTRAFRAME COSINE TRANSFORM CODING OF THE HEAD
‘ AND SHOULDERS IMAGES FOR TWO STATISTICAL MODELS. SUB-BLOCK SIZE =

64 X 64.
[ STATTSTICAL MODEL
§. BIT-RATE ISOTROPIC MEASURED
N. PER PIXEL | WITH CORRECTION STATISTICS
1 .25 31.49 dB 33.29 dB
2 .50 35.31 dB 38.06 dB
3 1.00 39.27 dB 43.71 4B
4 2.00 43.44 4B 48.49 dB
TABLE 4-3

SNR FOR NON-ADAPTIVE INTERFRAME COSINE TRANSFORM CODING OF THE EEAD
AND SHOULDERS IMAGES FOR TWO STATISTICAL MODELS. SUB-BLOCK SIZE =

16 x 16 x 16. :
STATISTICAL MODEL g
S. BIT-RATE MEASURED 3
N. | PER PIXEL SEPARABLE STATISTICS i
£
1 .10 28.53 dB 30.72 dB
2 .25 31.31 dB 34.35 dB
3 .50 33.34 dB 37.60 dB
4 1.00 35.49 dB 41.89 dB

e —————
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Table 4~3 shows the performance of the non-adaptive interframe

transform coding method for the separable model of (4-10b) with pi = oj

Py = .95, and the measured statistical model of (4-11). Tables 4-4 and
4-5 show the bit allocation for these two models. On comparing these two
tables we notice that the separable model wastes a large number of bits
on high spatial frequencies which contain negligible mean square energy.
Thus, it is a poor model (as pointed out earlier) in predicting the variance
of high spatial frequencies.

On comparing Tables 4-1 and 4-3 we note that for the separable
models, the gains due to temporal redundancy are only realized at low bit~
rates (once again, for the same reason as in the intraframe), and at 1 bit/
pixel there are no practical gains. While for the measured statistical
models, there are gains of 2-4 dB arising from temporal redundancy, the
gains decreasing with increasing bit-rates.

The comparison of Tables 4~2 and 4-3 show that, for the measured
statistical models, the gains achieved by the exploitation of the tem-
poral redundancy can be surpassed by an intraframe scheme by simply in-
creasing its sub-block size so that the total sub-block sizes of the
interframe and the intraframe schemes are the same. This result, which
appears unexpected at first, is because we have modeled the temporal
statistics by stationary processes--which is a poor representation in
areas of moderate and large motion.

One quantity, to which the relative performance of the intraframe
and the interframe schemes for motion images is definitely related, is
the amount of motion between sSuccessive frames. A lower value of this

quantity (resulting in high temporal correlation) will favor the interframe
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scheme if all the frames are required to be transmitted. Yowever, zao.ip-
tations due to motion must be made in areas of significant moticn.

Since the intraframe scheme requires much less memory (M image
rows) than the interframe scheme (L frames), the above result shows ch’
non-adaptive interframe transform scheme is unattractive from the MtI
point of view.

Parts. (a) and (b) of Fig. 4-4 show the images corresponding tc
frame #8 for the non-adaptive interframe transform coding. Comparins 7:.
‘-4{a) with Figs. 4-2(a)-(i) and 4-2(b)-(i), we note that {or compa.=z
levels of distortions,at a low SNR, the distortion due to the intrafr:--
and the interframe transform coding is differently distributed. The
stationary areas are much less noisy (or better reproduced) in the in-
rrame coding, while the moving area edges are more blurred. This resu .-
is expected. Thus, from the point of view of the exchange of spatial -.°:
-emporal resolution for the motion images, the interframe transform coc . :
~etuod might be more desirable for the same mean square error. This su=o-
the belief that the MSE alone is not a sufficient criterion in comparin:
various schemes. However, at high SNR values the MSE criterion seems :
reasonable for comparisons. Figure 4-4(b) shows a significant improver. -
due to measured statistics over the separable model.

Table 4-6 gives the parameters of the adaptive interframe tra-:
roding scheme. Table 4~7 gives the performance of an adaptive inter:.
transform coding scheme without adapting the statistics to each class.
This was done to separately study the effects of the adaptations of
bit-rates and the statistics to the classification. For the first env-

of this table even the bitr-rates were forced to be the same. Thus, it

Coeem n s e ———R A "
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corresponds to the non-adaptive case. This was done to see the distribu-
tion of the distortion among the classes. Table 4-8 gives the performance
of the adaptive scheme for adaptive bit-rates as well as statistics.

From the first entry of Table 4-7 we see that for a non-adaptive
case, the average distortion increases with the class number (as expected)
and there is about 13 dB difference between class 1 (containing areas of
low spatial and temporal activity) and class 4 (containing areas of high
spatial and temporal activity). Comparing this with entry 3 of Table 4-7
we see that, for the same average rate,the adaptation of bit-rates alone
results in great improvement in the distortion for classes 3 and 4 and in
an overall increase of 1.6 dB. From Table 4-8 we see that an additional
gain of 2-2.5 dB is achieved by adapting the statistics. Thus the overall
improvement for the adaptive scheme over the non-adaptive (interframe)
scheme is about 4 dB or a compression gain by a factor of about 2 in addi-
tion to the better reproduction of the high spatial activity areas and
the motion.

Figure 4-4(c) and 4-4(d) show some images for the adaptive inter-
frame transform coding. We can see that the adaptive scheme does far
better than the non-adaptive scheme. The performance of the adaptive
scheme at .l bit/pixel is superior to the non-adaptive scheme with the
separable model at .5 bit/pixel. This is evident by comparing images
(a) and (c) of Figure 4-4, where the former reproduces motion much better
(see the lips, the eyes, and the tie). Thus, at low SNR we obtain a com-
pression gain of 5 by the adaptive scheme over the non-adaptive scheme

with the separable model and still get better results.

4.2.2 Chemical Plant Images - Since the Chemical Plant images were

generated by an airborre camera, the motion is moe evenly distributed.

——
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Since any adaptation without motion compensation is not expecr«d
result in significant improvement, only non-adaptive schemes werc ~n7
Table 4-9 and Figure 4-5 show the results for the measured s:za-
tistical model. We notice that for these images, the signal rc ni-
ratios obtained are much lower than those for the Head and Stauli-
images. This is because these images have much lower correlation -~
the data is more noisy. Comparing the relative performances (T..
once again, we note that the intraframe scheme at sub-block sjz:

t4 x 64 is almost as good as the interframe scheme for the = .. ¢

of 16 x 16 x 16.

4.2.3 X~Ray Projection Images - The projection images

‘xperiment are the 2-D x-ray projections of a 3-D object ar w.
sveund a fixed axis and do not contain motion. The stationavi-
.istics is a more valid assumption for these images and thus thc
hetter candidates for interframe transform coding. The given im
very high correlation between the rows (along i-axisj. So a :
size of 8 x 32 x 16 was selected.
Table 4-10 shows the performance of the non-adaptive trars.c- .
‘ny method with measured statistics. Figure 4-6 shows an origin
aind some of the coded images at various compression ratios. 1In
he mean square error is plotted as a function of frame (vr im.,
The periodic occurrence of the error peaks after every eighth
due to the fact that these frames lie on the boundaries of our 8 = i

sub-blocks. However, this effect diminishes for lower compressi > : 3

¢.g., an almost constant mean square error at the compression ira.

i achieved.
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TABLE 4-9

SNR FOR NON-ADAPTIVE INTRAFRAME AND INTERFRAME COSINE TRANSFORM CODING
OF THE CHEMICAL PLANT IMAGES WITH MEASURED STATISTICS.

ha S

e~

INTRAFRAME INTERFRAME 1
BIT-RATE SUB-BLOCK SUB-BLOCK SUB-BLOCK B
PER PIXEL | SIZE = 16 x 16| SIZE = 64 X 64 |SIZE=16%16x 16
.5 27.26 dB 28.51 dB 28.65 dB i
|
1.0 30.73 dB 32.10 dB 32.16 dB |
2.0 36.37 dB 38.14 dB 37.97 dB 1 )
TABLE 4- 10
PERFORMANCE OF THE NON-ADAPTIVE INTERFRAME TRANSFORM CODER FOR THE X-RAY
PROJECTION IMAGES.
BIT-RATE COMPRESSION | MEAN SQUARE SIGNAL TO
S.N. PER PIXEL RATIO ERROR NOISE RATIO
1 .04 200 5.522 40.71 dB
2 .125 64 2.153 44.80 dB
3 .25 32 1.277 47.07 dB
4 .50 16 0.757 49.34 dB
5 1.00 8 0.373 52.41 dB
6 2.00 4 0.121 57.31 dB
B . e
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TABLE 4-9

SNR FOR NON-ADAPTIVE INTRAFRAME AND INTERFRAME COSINE TRANSFORM CODING
OF THE CHEMICAL PLANT IMAGES WITH MEASURED STATISTICS.

t
INTRAFRAME INTERFRAME |

S BIT-RATE SUB-BLOCK SUB-BLOCK SUB-BLOCK
N. PER PIXEL | SIZE = 16 x 16| SIZE = 64 X 64 |SIZE=16x16x 16
1 .5 27.26 dB 28.51 dB 28.65 dB |
i
2 1.0 30.73 dB 32.10 dB 32.16 dB i
3 2.0 36.37 dB 38.14 dB 37.97 dB |

TABLE 4- 10

PERFORMANCE OF THE NON-ADAPTIVE INTERFRAME TRANSFORM CODER FOR THE X-RAY

PROJECTION IMAGES.

COMPRESSION *17

BIT-RATE MEAN SQUARE SIGNAL TO
S.N. | PER PIXEL RATIO ERROR NOTSE RATIO
1 04 200 5.522 40.71 dB
2 .125 . 64 2.153 44.80 dB
3 .25 32 1.277 47.07 dB

T
4 .50 16 8,757 49.34 dB
5 1.00 8 0.373 52.41 dB
6 2.00 4 0.121 57.31 dB
—1

————

———




85

¢- 2an31y

‘ufewoOg WiOjSUBL] Ul SOT3IS}Iels painsedy Sursn Surpo) wiojsuei] Iwel3idIU] Pue dweIFEIIUT

‘gp G8°TE = ¥UNS ‘T9x1d/3Tq T = 93ei-179 ‘gP 09°0€ = NS ‘[oxTd/3Tq T = 33BI-3T4
‘9T X 9T = 92§ Y00Tq-qns ‘sweajyeajul (d)

‘9T X 9T X 9T = 9ZI§ HP0Tq-qng ‘dwea3idjul (P)

Lot

‘gP 66°1€ = ¥NS ‘T2XTd/31q T = 33IBA-11g ‘gp T€°8C = UNS ‘T9XTd/3Tq ¢ = 33IL1I-ITd
‘99 X y9 = 9zS Yoorq-qng ‘sweiyerlzul (Qq) ‘49 X $9 = 221§ NO0Tq-qng ‘sweijeijuy (®)

X

-

.

e }EWR.B»

S A e aee e

IR v




86 L)

(a) original (b) C.R. = 200

(c) C.R. = 64 (d) C.R. =16

Images resulting from data compression of a projection image at angle of
view = 0°,

Figure 4-6
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Figure 4~7: Variation of Mean Square Erxror as a Functi:.
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In the foregoing experiments we have encoded the projection data
and shown the coder performance on this data. However, in practice, the
medically useful information lies in 3~D view or equivalently, in the mul-
tiple adjacent transaxial cross-sections (also called levels) of the ob-~
ject, which are reconstructed from the projection data. The various
levels were separately reconstructed by approximating the x-ray cone beam
by a sequence of parallel divergent fan beams. This is a reasonable ap-
proximation for x-ray cone beam sources far from the object, and permits
use of a two dimensional reconstruction algorithm for each level. For
our data a divergent beam two~dimensional reconstruction algorithm [27]
was used. Final reconstructed images for various levels are of size
64 x 64 and were displayed after a sample averaging of three adjacent
video lines.

Figures 4-8(a)-(c) show the reconstructed images at levels 34 and
94 (of the total 128 possible) reconstructed from the original as well as
from the compressed projection data. Figure 4-8(d) shows the images of
the error signal between the original and the compressed reconstructions
at various compression ratios for level 94.

The effect of the data compression on resolution is readily observed
by viewing the reconstructed images at level 94. Notice the blurring of
two dark small circular areas at about the 4 o'clock position (small air
passages in the lung called bronchi) as the compression ratio increases.
The smaller of the two areas (upper right) starts disappearing at com-
pression ratio of 16, while the other one starts disappearing at
32. Generally the larger features are retained at even higher compression
ratios. The error images show that at lower compression ratios the sample-
to-sample errors are more or less uncorrelated, while at higher compression

T raties._the object

struc “are is more visible in the errors.




(a) Reconstruction of Level #34

(i; Original fiig C.R.
(iii) C.R. = 32 iv) C.R.

(b) Reconstruction of Level #94

(i) Original (ii) C.R.
(iii) C.R. =8 (iv) C.R.

Figure 4-8 :
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(d) Normalized error in reconstruction
of Level #94 due to Data Compression
= 8 (ig C.R. 4 éii; C.R. 16
= 200 (i§i C.R. 64 (jv) C.R. 200

(c) Reconstruction of Level #94

32

(i) Original (ii) C.R.
200

6 (ii1) C.R. = 64 (iv) C.R.

won
— o

" on

Reconstruction Images
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The high values of signal to noise ratio achieved at various cou-

pression levels demonstrate that large redundancy is present in the pro- ! ,
jection images. Preliminary indications are that compression ratios of
b 8 to 16 are realizable for those applications where very high quality
a
|
| (pixel by pixel) reproduction of the reconstructed images is desired. |
This would include applications where the reconstructed images are to ©.
used for detection and quantification of objects of small size (e.z.,
holes in the septum of the heart or distortion of vessels). In other i
applications, where the medically useful information lies in the size,
location and the boundaries of larger objects (e.g., motion of heart w.
muscie mass, etc.), larger compression ratios, 64 to 200, may be acceptz.:
!
!
1
q
¢
&
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CHAPTER V

INTERFRAME HYBRID CODING SCHEMES

Because of the rapid changes in the temporal characteristics of
motion images, it is desirable to have a predictive coding scheme along
the temporal axis. On the other hand, for spatial information transform
coding is more efficient. Hybrid coding utilizes the superior performance
of transform coding in the spatial domain and the simplicity of DPCM to
exploit the temporal correlation with tremendous savings in the memory
(requires only a single frame storage for a first order DPCM). Motion
compensation methods of chapter II can be successfully employed in this
design.

Figure 5-1 shows a simple (or non-adaptive) interframe hybrid
coding scheme. First we assume the data to be wide sense stationary.

Uk is an M X N sub-block of the kth frame. Vk is obtained by a 2-D
transformé:ion of Uk’ and is defined similar to the 3-D transform in
(4-1) with ﬁ,= 1. It can also be expressed as

=y U

Yk X

Each transform coefficient is independently coded by DPCM along the

temporal axis (or index k) via a suitable autoregressive model represent-

ing the statistical characteristics of the data in the temporal direction.

In order to limit the storage to one frame, we only consider first order
models. For images having plecewise uniform motion from one frame to the

next, a first order model would be reasonable. Thus, we havet

+ For any matrix A we denote A(1,j) = a(i,}) to be its (i,j)th element.
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vk(m,n) = q (m,n) + eé(m,n), lam

m,nvk-l

For simplification we assume

(o} = o = Constant.
m,n

(

5-2)

Although the above simplified assumption is not very realistic

for motion images, it does not affect the coder performance too adversely

(once the assumption of stationari v has been made). This is because at

low bit-rates only the low order (or high mean square energy) transform

coefficients are transmitted. For these a constant value for the predictor

coefficients am n given by (5-2) has been found to be adequate.

With

references to Figure 5-1, the various predictive coding equations, for each

1<m<N,1<n<N, are given as follows.

Predictor (at the Transmitter):

~ *
vk(m,n) o vk__l(m,n)

v;(m,n) Qk(m,n) + e:(m,n)

Quantizer:

Input: ek(m,n) = vk(m,n) - Qk(m,n)

Output: e{(m,n)

Reconstituted Output at the Receiver:

~ % = ~% ~ %
vk(m,n) oV + ek(m,n)

S e — e A A

SR iy B 2
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where Ei(m,n) is the received value of e;(m,n) at the receiver and in
the absence of channel noise E;(m,n) = e;(m,n).

For the Markov representation of (5-1), we have [31,86]

ci(m,n) 4 E[ei(m,n)] = oi(m,n)(l—az) , (5-3)

2 A . 2
where cv(m,n) = E[vk(m,n)]

and the values of Gi(m,n) are calculated either from a 2-D spatial domain
covariance model or by direct measurement as in the previous chapter.
(See appendix A for details.)

We assume that each ek(m,n) is Laplacian in distribution and is
quantized by its Max quantizer. Let bm a be the number of bits required

1]

to code ek(m,n). With these assumptions it can be easily shown that

(5-3) becomes [75,86]

oL m,m) = o’ (m,n) - (1-07)/{1-qb, Yo’} (5-5)

where q(+) is a quantization distortion function defined by (4-5).

Assuming noise-free channel, the average mean square distortion

is given by
M N
1 2
D=_—= Y J o-qkb_ )
MN mla=1 € ™7
1 , Ak ) (1-a?)
=N L L oy (mn) n 5 - (5-6)
mn 1-q(bm’n) o
As in chapter IV, we assume
bm,n = Integer > 0 (5-7)

- A_—--—A—v??iﬁ_yﬂw_,.;. PO

— — —_
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and N
I b__ =MD (5-8)

where b is the average bit-rate. The selection of bm n (or the bit allo-
3

cation) is made such that (5-6) is minimized. Once again, we use the

integer bit allocation algorithm of [86] to achieve this.

5.1 Adaptive Interframe Hybrid Coding Scheme:

The adaptive strategy of section 4.1 can also be applied to the
hybrid coding method discussed above with appropriate modification.
(In fact this algorithm was first developed for hybrid coding, and then
extended to interframe transform coding.)

The activity index of a sub-block is chosen to be its interframe

variance (IFV) given by

a =

o~

1
MN

oL

{y, (m,n) - (m,n)}2 .
1 a2 Uk Ur-1

Once again, a sub-block is classified into one of four classes by
choosing suitable values for the activity index thresholds. Different
bit-rates and statistics (prediction coefficient o, and transform coeffi-
cient variances os(m,n)) for each class are appropriately selected or
measured. This results in a variable bit-rate.

Figure 5-2 shows the schematic of Fig. 5-1 with necessary modi-

fications for the adaptions.

5.2 Hybrid Coding with Motion Compensation

It has been already pointed out in chapter II and elsewhere that the

temporal direction (for motion images) primarily consists of a deterministic
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component (i.e., motion). It was also shown in chapter II that this
component can be satisfactorily modeled by piecewise linear translations,
and that motion compensation based on this model results in a tremendous
reduction in the interframe varia.ce (hence, improvement in the temporal
correlation). Now we consider how the motion measurement methods of
chapter II could be incorporated in the hybrid coding schemes discussed
above. Let (21, 22) be the motion coordinates of the sub-block Uk rela-

tive to the (k-1)th frame. Then the motion compensation is incorporated

o]

by Uk

simply by replacing Uk -1 given by

-1

c Wy = . . .
Uk_l(i,J) = uk_l(i+21,3+lz) 1<i<M 1<j<N

*
and thus replacing Vk—l by

c* _ c* T
Vi1 = \PMUk—l‘yM :

The motion coordinates (21, 22) are coded together with the other information.
The frame skipping and the interpolation of skipped frames can be

incorporated in the schemes as described in section 2.5.

5.3 Distortion-Rate Curves from Models of Interframe Motion:

In section 2.1, the relationship between the temporal correlation,
the distributions of the interframe motion uncertainty (i.e., dx, Ey), and
the measurement noise was established. Assuming a first order Markov
separable model along the temporal dimension and a model for intraframe
covariance, we can thus calculate the distortion-rate functions from the
model of motion uncertainty.

Let dx and ay represent the motion uncertainty in pixels/frame

along x and y axes, respectively. Let N(i,0) and B(a,b) denote the

i S
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Guassian density with mean U aund standard deviation 0, and uniform density
in the interval [a,b], respectively. Let us assume that dx and ay are
identically distributed. We also assume that images are noise-free, i.e.,
6% = 0 in (2-6).

n

For the calculation of distortion-rate functions, we assume the
intraframe covariance model to be the isotropic model of (A-2) with
pi = pj = p. We choose two values for parameter ¢, viz., p = .95 and
p = .90. The first one, which we call Isotropic-1, is a good approximation
for the Head and Shoulders images. The second one, which we call Isotropic-2,
is a good approximation for the Chemical Plant images.

We have chosen two distributions for dx and ay, the Gaussian and
the uniform. For these distributions, we use the approximation of (2-6)
to calculate the temporal correlation coefficient, which is used as the
prediction coefficient o for the hybrid coding scheme desribed in this
chapter. We choose a sub-block size of 16 x 16,and (5-6) for the calcu-
lation of distortion.

Figure 5-3 shows some distortion-rate curves for various distri-
butions of dx and ay for unit variance data. The distributibns corres-—
ponding to the higher variances of dx and dy (i.e., B(-2,2), B(-4,4),
N(0,1)) could be assumed as reasonable models for coding without motion
compensation (dx = dx), and those with lower variances (i.e., B(-~.5,.5),
N(0,.25)) for coding with motion compensation. The curve for a = 0 corres-
ponds to the intraframe transform coding.

Table 5-1 gives the rates for a fixed distortion for each intra-
frame covariance model. These are also shown on Fig. 5-3 by dotted lines.

We notice that in the absence of motion compensation a hybrid coding

scheme achieves a compression gain (over the intraframe transform
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Isotropic-2 model, for the distributions considered. Motion compensation
results in another additional compression gain (over hybrid coding without

motion compensation) by a factor of *1,.35 for Isotropic-1 and *1.5 for

Isotropic-2.

TABLE 5-1
COMPARISONS OF RATES FOR INTERFRAME HYBRID CODING
FOR VARIOUS DISTRIBUTIONS OF MOTION UNCERTAINTY.

RATE (BITS/PIXEL)
DTSR ISOTROPIC-1 | ISOTROPIC-2
»dy D=-16.5DB | D = -18 dB
B(-.5,.5) .4073 .87
N(0, .25) .4518 1.00
B(-2,2) .5278 -
B(=4,4) - 1.49
N(0,1) 5754 1.34
a=0 1.0 2.0

5.4 Experimental Results:

Since the hybrid coding described above requires knowledge of the
initial frame, we assume that the first frame of the data is available as

initial condition without any distortion.

5.4.1 Head and Shoulders Images - All the hybrid coding schemes -

non-adaptive, adaptive, and adaptive with motion compensation (with and
without frame skipping and interpolation) - wereapplied to this data set.
A sub-block size of 16 X 16 was selected. An isotropic covariance model

with correction as described in appendix A has been used for modeling the

intraframe statistics.
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Table 5-2 gives the performance of the non-adaptive hybrid coding
scheme for which the suitable values of the correlation parameters were
found to be p; = .955, pj = ,945, o = .80. Comparing Table 5-2 with the
entries (for the isétropic model with correction) in Table 4-1 we notice
an improvement of about 2-2.5 dB at the bit-rates considered, or, equi-
valently, a compression gain by a factor of about 1.5, as a result of
temporal correlation.

Figure 5-4 shows the histogram of the activity index. Although
the dynamic range of the activity index is roughly 0-3000, the histogram
shows the distribution in the range 0-200 (in which about 90% of the samples
are contained) to better utilize the range of the histogram. All the sub-
blocks having activity index above 200 have been lumped in the last columm.
We see that a great number of sub-blocks have a very low activity index
(mainly due to stationary background). The threshold values of the activity
index chosen are marked by arrows. Our experimental results indicate that
the coding performance is not very sensitive to threshold selection.

Tables 5-3 and 5-4 show the parameters and the performance of the
4 class adaptive hybrid scheme. Comparison of the correlation parameters
of table 5-3 with those for the non-adaptive hybrid scheme confirms our
earlier statement (in chapters II and IV) that the classification based
on the activity index (IFV) divides the images into classes of varying
spatial activity (characterized by 0y and pj) in addition to the varying
temporal activity. The improvement due to the adaptations of the bit-rates
and the spatial-temporal statistics is about 4-4.5 dB, or equivalently, an
additional compression gain (over the non-adaptive hybrid) by a factor of 2.

Figure 5-5 shows the signal to noise ratio as a function of frame

number for the non-adaptive and the adaptive hybrid schemes and the intra-
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TABLE 5-2
PERFORMANCE OF THE NON-ADAPTIVE HYBRID CODING
SCHEME FOR THE HEAD AND SHOULDERS DATA.

S. SICNAL TO
y. | BIT-RATE NOISE RATIO
1 .25 32.28 dB
2 .50 35.49 dB
TABLE 5-3
PARAMETERS OF THE 4 CLASS ADAPTIVE HYBRID

SCHEME FOR HEAD AND SHOULDERS DATA.

(LI

CORRELATION
PRORABILITY PARAMETERS
CLASS ACTIVITY OF oy 0. .
NO. INDEX GCCURENCE J
1 0-20 .5768 .98 .975 .98
2 20-60 .1737 .945 | .9 .93
3 60-200 .1320 .92 .905 .80
4 200- L1174 .86 .84 .40
TABLE 5-4

PERFORMANCE OF THE ADAPTIVE HYBRID CODING SCHEME
FOR THE HEAD AND SHOULDERS DATA.

__ BIT-RATE SIGNAL TO NOISE RATIO IN DECIBELS

S- CLASS # OVER- CLASS # OVER-

N o1 2 3 4 ALL 1 2 3 4 ALL

1].03 | .10 |.18 | .40 ].124 | 34.82 | 31.85 | 31.01 | 30.32 ] 32.86

21.075 | .30 | .45 | .75 ].25 | 37.35 | 35.95|35.65 | 35.03 | 36.52 :
3(.18 | .70 | .90 [1.25].50 | 39.80 | 39.89 |40.23 | 39.70 | 39.85
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Figure 5-4:

Sub-Block Size = 16 x 16,
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frame transform coding scheme (which is a special case of the non-adaptive
hybrid scheme when % = 0). We make the following observations and comments
from the figure. (i) The SNR is almost constant for the intraframe trans-
form scheme. This is expected because the spatial contents of the frames
are very similar. (ii) The SNR varies greatly as a function of frame num
ber for the non-adaptive hybrid coding scheme. This variation is primarily
due to the variation in the amount of motion activity. The frames having
larger motion (e.g., 7 through 10) have low SNR, which is very close to

the SNR of the intraframe scheme. (iii) For the adaptive hvbrid scheme,
the SNR is fairly constant (as would be expected from a good adaptive
scheme). Thus, the adaptations proposed are effective.

Figure 5-6 shows the bit-rate as a function of frame number for the
adaptive hybrid coding. The frames containing larger motion have higher
bit-rates (as would be expected). However, the bit-rate variation is not
as rapid as would be expected from a predictive coding scheme such as the
frame replenishment cluster coding described in section 3.1 (if the rate
is not controlled by thr butfer fulness).

Figure 5-7 shows some of the images of frame #8 resulting from
adaptive and non-adaptive hybrid coding. Comparing the images of Figs.
5-7(a) (non-adaptive hybrid) and 4-2(a)-(i) (intraframe transform), we
notice that the non-adaptive hybrid scheme reproduces moving areas very
poorly as compared with the intraframe transform scheme. However, the sta-
tionary areas are better reproduced. Note that the only difference be-
tween the coding of these two images is the temporal prediction coeffi-
cient (which is .8 for the hybrid scheme and 0.0 for the intraframe

transform scheme).
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At low bit-rates (Figure 5-7(b)) we notice a shadow (or ghost)
near the sharp edges of moving areas for the adaptive hybrid scheme. If
a smoothing filter is employed in the temporal direction, this distortion
will change to blurring of the moving areas (the interframe transform
coding does that, as can be seen from Figure 4-4(c)). At higher bit-rates
the shadow effect diminishes and the visual quality of the adaptive hybria
and adaptive interframe transform schemes are comparable. Thus from
complexity consideration, the adaptive hybrid coding scheme is more
attractive.

. On comparing the adaptive hybrid coding scheme presented here with
the one presented in [67] we note the following - (i) the mean square per-
formance is slightly (1-2 dB) better for the scheme presented here at
hither bit-rates ( >.5); (1i) the scheme presented in [67] is computation-
ally more complex; (iii) the scheme presented in [67] has a fixed bit-rate
(overall as well as for each sub-block), while the one presented here has
a variable bit-rate; (iv) the scheme presented here reproduces moving
edges more accurately (because of the higher bit-rate in the areas con-
taining moving edges).

Now we present the results for the adaptive hybrid coding with
motion compensation. In these experiments only frames 5 through 9 are
used (to minimize computational costs). However, we have no reason to
believe that the results will be significantly different if all the 16
frames were employed. This is because, with motion compensation, the
interframe activity (measured by IFV) is almost a constant function of
frame number (as was shown in section 2.4). Thus, the distortion and/or
the frame bit-rate would now be (as opposed to the case of no motion

compensation) independent of frame number. Also, as is evident from
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Figure 5-5, the adaptive hybrid coding scheme achieves the steady state
very fast (right after the first coded frame). For results on nmotion
measurements, frame skipping, interpolation, etc., for these frames, sec
section 2.4.

Tables 5-5 and 5-6 give the parameters of the adaptive hybuvid
scheme with motion compensation without and with alternate frame skippinz,
respectively., We note the following - (i) Due to change in the distrib i io-
of the activity index (greatly reduc:d), as a result of motion compen-
sation, the thresholds for classification have been lowered; (ii) Theciz
is a great improvement in the temporal correlation as evidenced by the
values of a. We would also like to point out that the average temporal
activity (measured by average motion in pixels/frame of a class is not
directly evident from the value of & which is very nearly the tempora!

correlation parameter). Let h represent average temporal activity

after motion compensation. Let pi = pj p. Let the intraframe covarizance he

given by the isotropic model. Then, an approximate value of h is giver »

A2:30]
Ln(P)

. Anl1-(-oy}
2ntl-(1-p)

1-o

1-p

= ke
k? ’

or h =

=
?

Computing this quantity from the entries of Table 5-5 we note that it ‘s
very close to .25 for all the four classes, which further supports our con-
clusions in chapter II that the motion uncertainty, after motion compensa-

tion, is fairly uniformly distributed over various classes. Thus, the

i‘ iiilil Rt
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TABLE 5-5

WITH MOTION COMPENSATION FOR HEAD AND SHOULDERS DATA.

PARAMETERS OF THE 4 CLASS ADAPTIVE HYBRID CODING SCHEME WITH
MOTION COMPENSATION, USING ALTERNATE FRAME SKIPPING AND INTER-
POLATION, FOR HEAD AND SHOULDERS DATA.

PROBABILITY CORRELAT ION
CLASS | ACTIVITY OF PARAMETERS
NO. INDEX OCCURRENCE Py o, o
1 0-10 .506 .985 .98 996
2 10-20 .295 .955 <945 .99
3 20-50 .143 .91 .90 .97
4 50- .057 .80 .78 .95
TABLE 5-6

PERFORMANCE OF THE ADAPTIVE HYBRID CODING WITH MOTION COMPENSATION

FOR HEAD AND SHOULDERS FRAMES 5 THRU 9.
POLATED ALONG THE MOTION TRAJECTORY.

PROBABILITY CgRRELAgégg
CLASS | ACTIVITY OF 5 ARAME =
NO. INDEX | OCCURRENCE i Py
1 0-20 .67 .98 .975 .99
2 20-40 .184 .95 .94 .97
3 40-100 .102 .91 .90 .95
4 100- .045 .80 .78 .90
TABLE 5-7

SKIPPED FRAMES ARE INTER-

RAMES | AVERAGE |_SIGNAL TO NOTSE RATIO IN DECIBELS
SKIPPED? gég—géigL Fggﬁgg INTE&XS@QTED OVERALL
NO .253 38.74 - 38.74
YES .252 39.97 37.58 38.62
YES .125 37.60 36.69 37.12
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adaptation due to classification in this scheme is used to compensate

for the spatial non-stationarity. If the images are spatially stationary,
this scheme will reduce to the non-adaptive hybrid coding scheme with
motion compensation.

Table 5-7 gives the coding results for the adaptive hybrid scheme
with motion compensation with and without frame skipping. At an SNR of
about 37 dB a compression gain by a factor of two can be achieved over
the adaptive scheme without motion compensation. Figure 5-8 (parts (b)-
{(d)) show the resulting images corresponding to frame 8. Visual quality

of these images is very good. The results indicate that at very low bit

rates (.125 and below) the adaptive hybrid coding scheme with motion
compensation and frame skipping, and interpolation of skipped frames
along the motion trajectory, is very promising for high quality fidelity
encoding of motion images.

In the experiments on coding with motion compensation, the direc-
tion of minimum distortion (DMD) method described in section 2.3 was used

with mean square distortion criterion for the measurement of motion.

5.4.2 Chemical Plant Images: Due to very low spatial correlation
and large temporal activity, the hybrid schemes without motion compensation
(non~adaptive and adaptive) are expected to result in no significant improve-
ment over an intraframe transform coding scheme. Therefore, the adaptive
hybrid coding scheme with motion compensation was used. A sub-block size
of 16 x 16 was selected.

The motion measurement was done by the area correlation method with
a Fourier domain filtering given by (2-12) (see section 2.3 for details).

The value of vy = .5 was found to yield good results. For this data set,
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the performance of the area correlation method and the DMD method of motion
measurement is comparable (with DMD being slightly superior).

The intraframe statistics were measured (in the transform domain)
for each of the classes. Tables 5-8 and 5-9 give the parameters and the
performance of the coding scheme. Figure 5-8(a) shows an image correspond-
ing to frame 12. Comparing these results with those of the intraframe
transform scheme with the same sub-block size, we note an improvement of
about 2.5-3 dB. The compression gain (over the intraframe scheme) at a
distortion level of 30 dB is by a factor of about 2, and smaller at higher
distortion levels.

Thus, we see that the gains due to adaptation and motion compen-
sation are much lower than those for the Head and Shoulders images. From
the results of section 2.5, it is evident that the frame skipping and inter-
polation along motion trajectory can be successfully used for these images
to achieve higher compression similar to those for the Head and Shoulders

images.

5.4.3 Angiocardiogram Images - The temporal activity of these

images exhibit two characteristics of the cardiac cycle - (i) it is
periodic; (ii) it is nonuniformly distributed over a period (cardiac
cycle). Also, at the frame sampling rate of 1/30 sec., the images have
high temporal correlatinn.

Due to the above properities, the adaptive hybrid coding scheme
(without motion compensation) was found to be ideally suited for these
images. The images were found to be spatially stationary. This was ex-
pected, because these images donot exhibit sharp features which are
characteristic of most video images. Therefore, adapting the intraframe

statistics to classes of different activity index is not necessary.
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TABLE 5-8

PARAMETERS OF THE 4 CLASS ADAPTIVE HYBRID CODING WITH
MOTION COMPENSATION FOR THE CHEMICAL PLANT IMAGES.

PROBABILITY TEMPORAL

CLASS ACTIVITY OF PREDICTION

# INDEX OCCURRENCE | COEFFICIENT o

1 0-100 L4773 .90

2 100-300 L4143 .75

3 300-750 .0956 .60

4 750- .0128 .40

TABLE 5-9

PERFORMANCE OF THE ADAPTIVE HYBRID CODING WITH MOTION COMPENSATION
FOR THE CHEMICAL PLANT IMAGES. SUB-BLOCK SIZE = 16 X 16.

BIT-RATE SIGNAL TO NOISE RATIO IN DECIBELS |
S, CLASS # OVER- CLASS # OVER-
N. 1 2 3 4 ALL 1 2 3 4 ALL
1 .148 .70 1 1.0 .875 .5 30.31730.22 | 30.09 | 30.59 | 30.25
2 .55 1.3 1.5 |1.5 1.0 | 33.77 | 34.06 | 33.34 | 34.59 | 33.85
3 11.75 |2.15]2.25|2.25 2.0 | 39.57 | 38.71 | 37.67 | 38.85 | 38.98
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Figure 5-9 shows the bit allocation at two bit-rates. Bit allo-
cation pattern for these images is very unusual compared with video
images. The data seems to have some characteristic frequencies (more
accurately speaking,the discrete Cosine transform basis vectors). An
attempt to model the statistics by any of the commonly used models would
result in a loss of these frequencies, and thereby, a probable loss of
medically useful information for the same signal to noise ratio.

Tables 5-10 and 5-11 give the parameters and the performance of the
coaing scheme. Figure 5-10 shows the classification maps for two of the
frames. It is interesting to note from Fig. 5-10 that the classification
scheme very closely follows the activity of the cardiac cycle. During a
stationary cardiac frame period, the scheme uses less than one-third the
average bits/frame and during an active period, about twice the average
rate,

Figure 5-11 shows two of the original frames (combined into a
single image) and their coded equivalents at some of the compression
ratios. Even at very low bit-rate of .0625 (or a compression ratio of
128) the image quality looks fair (by evaluation of still frames). For
these images a compression ratio of 32 to 128 seems to be realizable.

An accurate reproduction of motion is required for these images. The
methods using the exchange of spatial and temporal resolution, which

are acceptable for the video images, could not be used for these images.

e

B N T L e

Sreas ™ A,-i,‘_ilulmf;&w‘ S

.

- . —a



[T T]
| =]
o~
-
e e —— |
L+
L o
+ o0
e -~ — (o]
= .
%)
) r—
T O
- e p— e e =
o wn
Q
W e
[+ I 1]
P e g e p— } Y —
5o
O %
o wn
e e e e >y ~
— T wn
L o
o Qe
= L
- = = p— = o w
S Lt
- O
- .
(&1 3
- = p— —_Q Il
B
ERT]
~TE
o <
~ - r— p——— —_—
V) Y
-3
Q- mwn
= R
——r— — — p— — - T L
22>
-
oo S
L VO
= p—= e p— p— g L O Y-
~—
o
(ol ol o Sl antt ol ol ] S

<r
N
Q PO
E o o
NN MMM NN - "
-~ O [+
- T
©C V= - £
- T N
M N NI < <Oy N Rt A %
[ B i =g
© z O
o mc —wn
o T o
NANM|<T < N — QY% o =
VO Wn -
s3] o
eV r— 2 5
- O OO0
M NN o oy omg-—u-
(&
<) [NV}
S>E D>NLC oW
— P o
(a2 X K sV o V] <oy o = - S
OO > 0O
e B B
O O+ -
U O o
MHANNONM <o Ny L © O
Egie] =
(8] O .
e s QA Q
L O YU ne—
MMM NM ety oy T QO
N O e
— e S
"D . O+
O~ O -
NANMOMOMm AN ™ r— 4 U w
o v >
¢ Y Q [«
O O @4 £
= L 4 m©
NANN MO NN N T s~ BV »n
L O T~
g o [= v
TS U 3P
“- QUL OL o
NN AN NN b Qb 04+ 0
_—
L
g

NN NN~

114

OO0 OOCOOOOOOOO OO0 0COO0OOOOOOOCOOO
COO0O0O0OOCOOOOOOOOOO —O0000O000DO0ODOOOOO
—O0O00O0O00COO0O0OOOOO N—— OO0 ODOOCOOO
N—ooooooooooooooHmmppwooooooooooo
mpoooooooooooooogqmﬁooocooooooooo
m~~ooooo°ooooooogemN—00oooooooooc
N—cooooooooooooc:mmm———oooooooooo
~—OOOOOQOOOOOOOOSMNNPPOOOOOOOOOOO
~oooooocooooocoowN——o~ooooooooooc
mOO0O0O0O00O00O0O00COOOO N NF—~D0000000OOCOOOO
poooooooocooooocﬁNp_ooooooooooooo
—OOO0O000OCCOO0O0OOEO "8 ~—0000OC0DDOODOO
N~FOOODOOOCOOCOOOOOO MNN—~OO000O00DOO00O0
NN~ 000000000000 TN NN~ — 00000000
WOON—~ OO0 0O0OO0OO0O0COOD NUOSTOMNMNNrr_e_—_—_— OO r—
MNUOSLTNNNrer e OO0 0O r——~— AN NMANANNNNNNNNNM

-y

(b) .70 bit/pixel

Classification Maps for Two Frames of the Angiocardiogram

Bit Allocation for 16 x 16 Sub-block

(e
T
nwn
o~
—t 7]
. ~
joo]
] =]
ord
v I
+~
3]
[+
|
S
o~
24
)
&L
o
~
%}
>
<
1}
U
00
(1]
E
—
n
[
o0
<
E
—
E
o
(=)
o0 1
o wn
T w
N
©® 2
LS}
O -
- [
o0
(=]
Lo
Ll
%) hd
W @
Y
N
e
v

T S e o et




115

TABLE 5-10

PARAMETERS OF A 4 CLASS ADAPTIVE HYBRID CODING SCHEME FOR
THE ANGIOCARDIOGRAM IMAGES.

CLASS ACTIVITY PROBABILITY TEMPORAL

# INDEX OF OCCURRENCE CORRELATION
o

1 0. - 10. .570 .98

2 10. - 25. .282 .90

3 25. - 60. .103 .85

4 60. - 00 .045 .75

TABLE 5-11

PERFORMANCE OF THE ADAPTIVE HYBRID CODING SCHEME FOR THE ANGIOCARDIOGRAM

IMAGES. SAME MEASURED STATISTICS WERE USED FOR ALL CLASSES. SUB-BLOCK

SIZE = 16 x 16.

S.| BIT-RATE PER PIXEL coMpResSTON |SIGNAL TO NOISE RATIO IN dB

N. |CLASSTCLASSTCLASSTCLASS]OVER RATIO CLASSTCLASSTCLASS|CLASSTOVER
1 2 3 4 |ALL 1 2 3 4 | ALL

11 .027.05] .13 ] .35 .0625 128 35.95134.34133.44]33.37135.00

2 1.039 | .12 | .28 | .70 |.1250 64 38.39{37.24|36.1936.17|37.66

31.10 ) .25} .60 |1.17 [.250 32 40.61/39.35/38.81/38.02|39.87

4 1 .25 | .60 {1.0 1.7 |.50 16 42.08|41.59{40.73(39.67(41.64
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(a) Original

C.R. = 16

(c) C.R. = 32 (d)

Images resulting from data compression of angiocardiogram images. The
top half of each image approximately corresponds to an end of systole

and the bottom half to the end of the following diastole.
Figure 5-11
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CHAPTER VI

DATA COMPRESSION FOR NOISY CHANNELS

In the data compression designs ccnsidered in the previous chapters
we did not consider the effects of channel errors (in transmission or
storage-retrieval). The performance of a data compression method was
evaluated assuming a noise-free channel. However, in the presence of
channel errors (bit reversals) a coding scheme designed without regard to
channel noise characteristics couid yield poor to disastrous results.

A common approach for reducing the effects of channel errors has
been the use of error correcting codes [45] which aim at minimizing the
probability of bit error by introducing redundancy in the code word
(blocks 4 and 6 of Fig. 1-1). However, a better design would be to in-
corporate channel characteristics in the data compression algorithm itself,
(blocks 3 and 7 in Fig. 1-1), e.g., in the design of quantizer [41],
design of predictor coefficients for DPCM transmission [14], periodic
reinitialization of DPCM loops, etc.

Most conventional error correcting codes provide equal protection
to all the bits for a Gaussian binary symmetric channel. Often,all the
data bits do not have equal importance. For example, in transform coding
the transform coefficients have highly uneven distribution of mean square
energy and different bits of the same coefficient have unequal effect on
the mean square energy. For example, in a transform image coding scheme
described in [51] certain bits which have "signjificant" effects on image
quality are identified and only these bits are provided protection by

using error correcting codes. However, the experimental method used
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there for identifying the significant bits is tedious and does not have
any systematic quantitative formulation. Also, all the significant bits
are provided equal protection, although their effects on the image quality

vary considerably.

6.1 Channel Encoding-Decoding of a Random Variable with MSE Criterion:

Crimmins, Horwitz, et al.[18.19] have proposed an alternative
method of encoding numerical data. Their method is based on minimizing
the mean square error (MSE) due to channel noise rather than minimizing
the probability of bit-error. They find the optimum encoding and decoding
rules for transmitting a set S of equispaced and equiprobable real numbers
over a memoryless channel using certain group (or block) codes. The set
S contains K elements where K = 2k, integer k > 0, and the code words are
chosen from a given group G of order K. Each member of group G is a code
word of length n bits (n > k). G is thus a subgroup of the binary group
V containing all the code words of length n. Both G and V are groups
under exclusive-or operation (denoted by @ ).

In [18,19] the decoding rule is restricted to map back into the
set S. Wolf and Redinbo [78,79] have extended these results to the case
where the optimum decoder maps into the field R of real numbers. No
method, other than exaustive search, for finding the optimum subgroup G
has been found.

Usually the finite set S contains the quantized values of a con-
tinuous random variable, say y. For example if y is a random variable rep-
representing the intensity of an image, then S = {0,1,...,255} could

represent digitized values of pixels for 8 bits/pixel digitization.
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Except when y is uniformly distributed the set S of its quantized values

cannot be equispaced and equiprobable at the same time for k > 1. If y is

non-uniformly distributed and is quantized using the minimum mean square

error Max quantizer, the set S is neither equispaced nor equiprobable for

k > 1. The procedure of [79] for finding the optimum encoding rule does

not apply to such cases. This still remains an open problem. The optimum

decoding rule is still given by the conditional mean [79]. Based on our

experimental results we believe that the codes generated by the method of

[79] could be used for the nonuniformly distributed y with great advantage

over the conventional error correcting codes.

v QUANTIZER s ENCODER CHANNEL DECODER

o (+) B(+) n() YO I

Figure 6-1: PCM Transmission of a continuous Random Variable havine zero
mean and unit variance over a noisv channel

Figure 6-1 shows a PCM transmission scheme for noisy channels. Let

ak be a k-bit quantization function of a random variable y defined by

% (y) = s, for y, €V < yy410 V5 285 £ V44,

j=1,2,...,K

where Y1 and Y41 are the minimum and the maximum values of the random

variable y and

< 3.
yi<yj if 1 < §

T————— . - T A O A e S s

b
By

s A e




120

Then it follows that S = {sl,sz,...,sK} is an ascendingly ordered set of
real numbers. Let H be the group of all k-bit binary code words arranged
in the natural order, i.e., the jth element of H is the k~bit binary repre-~

sentation of the integer j. Let

be an ordered mapping of S onto H. We would like to point out that under
this mapping the optimum encoding procedure of [79] provides maximum pro-
tection to the most significant bit of h €H and increasingly lesser protec-
tion to the lesser significant bits. For most distributions and quantizers
of practical interest this results in a significantly better mean square
performance than equal bit error protection encoding. This is our ration-
ale behind using the mean square encoding procedure of [79] even though it

is not optimum for nonuniform distributions. Let

1-1
tH—>G

en,k
1-1

B:8 ——>G,

then B = Bn K O] W, is the encoding rule, where O represents composite
’
function operation.
The channel error function U transforms an n-bit code word g € G

into another n-bit word v € V randomly and is described by the transition

probability P(v|g). Let

v=g@®@u

where u is an n bit error word. Let us assume that the channel is

memoryless, i.e.,

M

ofC A
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P(vlg) = P(v@® g|0) = P(ul0)

where O is the identity element of V. The functionn is then completely
characterized by P(u|0), ¥u € V. The decoding function A maps the n-bit

. * .
word v into a real number y”. We define

eg = s, a0 = [e§1/02
e = yr-g c{n,k) = F[ezl/c2
C y > v -+ C
e, = y*-y, t(n,k) = E[ez’,/o2

where q, ¢, and t are the quantization, the channel, and the total (quan-
tization plus channel) mean square distortion functions and 62 is the
variance of y. The optimization problem can now be stated as follows:
Given n, n and the distribution of y, find k, &, B, A and G such that the
total distortion, t(n,k) is minimized.

The problem as stated above is quite difficult and the joint optimi-
zation of the quantization and the encoding seems untractable at the
present. A solution for a special case of the above problem has been
given by Kurtenbach and Wintz [41]. They assume k = n (which implies
G V), fixed 8 (e.g., 8 = 1), and X = 6—1 and find an optimum quantizer a.
This does not provide protection for channel errors by introducing redun-
dancy. The performance of such a scheme is usually not as good as those
which do provide protection by introducing redundancy.

To simplify the problem, we separate the quantization and the encod-
ing. We choose 0 to be the optimum Max quantization function [47], which
minimizes the quantization distortion q. For any given B and G the
decoder A which minimizes the channel distortion ¢ is given by the

conditional mean [78,79], i.e.,

‘
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E[s'v]
2 s P(s|v)
s €S

) sP(v|s)*P(s)/P(v)
S€S

1 s°P(v]B(s))-P(s)/P(V)
S€S

I s-P(v® B(s)|0) P(s)
s€S

) P(s)*P(v® B(s)|0)
s€S

(6-1)

(6-2)

where P(s) is the probability of the quantizer output s, which can be

calculated for any givena from the distribution of y.

If o is the Max

quantization function, then it can be verified that (6-1) also implies

A= E[ylv].

s and v,

[

Let P(v,s) be the joint distribution of the random variables

n,k

Then the channel distortion is given by

E[{y*—s}zl

E[{A (v)-s}?]

)

Z {A(v)—s}zP(v,s)

SES v&V

)

J (A (v)-s} 2P (v]8)P(s)

S€ES vev

!

T {A()-s}2P(v @ B(s)]0) P (s).

8€S v&v

(6-3)

Now we establish the following relationships between y, s, y*, eq, e. and

et.
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Theorem 6-1: If o is the Max quantization function and A is given

by (6-1), then the following hold

(i) E[s'eq] =0 (6-4)
(i) E[y*-e ] =0 (6-5)
(iii) E[y*+e ] =0 (6-6)

Proof: Let fY(y) be the probability density function of y. Then
the following holds true for the Max quantization [47]
(yi+1

s; = j y'fY(y)dy 1<i<K. (6-7)

Vi

Part (i) of the theorem is a well known result for the Max quantizer and
will not be proved here.

The right hand side of (6-5) can be written as

Ely*+e.] = Ely*(y*-s)]
= By*?] - Ely*s] . (6-8)
Now
Efy*s) = E[A(v)+s]

z Z s*A(v)P(s,v)
S€S ve&V

7 ] s A(v)-P(s|VIP(W)
s Vv

= 1) P(v) | s°P(s|W)}
v s

= § {(A(v)-P(v)-E[s[v]}
v

o s AT e
e SRR SO 2
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TA(V) P(v) *A (V)
v

E[{A ()} ?]

E[y*?]

Thus, from (6-8) and (6-9) we have

*, =
Ely ec] 0
which proves (6-5).

The left hand side of (6-6) can be written as

Ely*e, ] = Ely*(y*-y)]

E[y*] - Ely*y].

Since

<]

Ely*y]l = ] A(v)-f nylv(y)dy-P(v)
v€v -~

K i+l
= AW P(v): 1 ] [
v i=1
Yy

Using (6~7) we have

R

[using (6-1)]

ny(y)dy-P(silv)

(6-9)

(6-10)

4
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K
) siP(silv)
i=1 )

E[y*y]

Zk(v)'P(v)'{
v

= Ja(v)*P(v)+ E[s|v]
v

= TA(v) -P(v) A (V)
v

= B[}

*2y (6-11}

= Ely
Thus, from (6-10) and (6-11) we have

E[y*-e.] =0

which proves (6-6) and completes the proof of the Theorem 6-1.

Corollary: The errors due to the quantization and the channel noise

are uncorrelated, i.e.,
E e =0 . 6-12
[2q C] ( )

Proof:

Elese.] E[eq(y*—s)]

E[eqy*] - Elegs]

Ely*(e,-e )] - Eles]

Ely*e.] - Ely*e ] - E(se,]

=0
which follows from the theorem. A direct consequence of (6-12) is

t(n,k) = c(n,k) + q(k) . (6-13)
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For a given n, the optimum value of k, k', is found by computing t(n,k)
for 0 < k < n and finding the minima of k vs t(n,k). Let

d(n) = min-{t(n,k)} = t(n,k"). (6~14)
k

Then d(n) vs n gives the distortion-rate function of the PCM channel. We
call the optimization of (6-14) channel optimization.

For uniform distribution of y the optimum encoding function 8 for
a given G can be found as in [79]. The same B could be used for some other
distributions of practical interest as pointed out earlier. No simple

method for finding the optimum B for such cases has been found so far.

6.2 Coding of a Random Process for Noisy Channels:

The concept of channel optimization for a single random variable
could be extended for coding images and other correlated signals or
random processes. In particular we consider the transform coding method.
With respect to channel errors transform coding has an advantage over
the predictive or hybrid methods. Since each transform coefficient is
coded completely independently, any error due to the channel noise does
not effect the other coefficients. On the other hand in predictive coding,
the errors due to channel noise accumulate at the time of reconstruction
at the receiver. This is because unlike the quantization errors the
channel errors cannot be fed back in the prediction loop at the trans-
mitter. For optimization of prediction loops for DPCM transmission of
images over noisy channels, see [14].

Figure 6-2 shows a transform coding scheme with channel optimiza-

tion. X i3 an M X 1 real array and

y = ¥x

Smeen s e g ggeagment i
o0 7
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is an M X 1 array of transform coefficients, where ¥ is an M X M
unitary transform. We assume for simplicity that all the transform

coefficients are real, identical distributed, and have zero mean. Let
2 A 2
o (m) = E{y"(m)]

where y(m) is the mth transform coefficient. Let us also assume that the

colums of the transform matrix ¥ are arranged in an order such that
o2(1) > o2(2) > ... > 2. (6-15)

Then the total distortion between the input array X and the repro-

duced array X* is given by

E[ (x-x*) T (X-X*) ]

=)
I

E[ (7-v*) T (¥-¥*) ]

M 2
Y El{y(m) - y*(@m)}°]
m=1

Mo
} 6% (m) -t (n(m),k(m)) .
=1

Assuming that for each n(m) the optimum value k'(m) is used, we obtain

¥
D= ) o“(m)-d(n(m) . (6-16)
m=1

We would like to minimize D subject to the constraint

<4

M
} n(m) = b (6-17)
=1

where b 1is a given rate in bits/sample. We assume that B and G for

various values of pair (n,k) are chosen such that the distortion-rate

. —
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function d(n) is a non-increasing function of n. This condition can
always be satisfied in practice. The minimization of (6-16) subject to
(6-17) is identical to the bit allocation problem discussed in chapter IV
except that the quantizer distortion function, g, has been replaced by
the optimum total distortion function, d. However, it is not easy to
approximate d by piecewise continuous functions as has been done for the
quantizer distortion, q, for some commonly used densities [86]. Thus,the
use of integer bit allocation procedure of [86] becomes even more
important in this case.

It could be easily verified that the K-L transform would be

the optimum unitary transform for the scheme described above.

6.3 Experimental Results and Distortion—-Rate Functions:

We have carried out simulations for an important class of channels,
the binary symmetric channel with probability of bit-reversal p. We
report results for the PCM transmission of a random variable (without
loss of generality we assume zero mean and unit variance) for three commonly
used densities, the Gaussian, the Laplacian, and the uniform. The uniform
density also gives the lower bounds for the quantizer distortion, q(k),
and the channel distortion normalized by the variance of s, i.e.,
c(n,k)/(1-q(k)). For quantization we use an approximation of the optimum
(Max) quantizer described in [4]. This approximation is very close to the
optimum. Table 6-1 gives the distortion-rate functions for the three
densities.

Using the algorithm outlined in [78], we have found some suitable

choices of the group G for various values of the pair (n,k). Table 6-2
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TABLE 6-1

QUANTIZER DISTORTION q{k) FOR VARIOUS DENSITIES.

Densi T 2 1 3 §F 5 T 6 T 7 Ut g I
Ti - _ 1
UNTFORM 25 | .0625 | .0156 | .0039 |.00098| 2.4x10°416x10°° 1. 5x10;°
! GAUSSIAN .368 1204 l .0356 | .0098 | .0026{ .0006 /.00017 t 4x10 -5
L LAPLACIAN | .5001 ' .1835 | .0571 | .0160 | .no42) .0011 '.p0027 | 7x107° !
TABLE 6-2
BASIS VECTORS {g.:i=1,...,k} OF GROUP G FOR (n,k) GROUP CODES.
IRERNE 0 1 2 3 ] 4
% 1 10000000 | 10000000] 1000000011 10092020110
|2 01000000 010000000 0100000001 ¢ 61020000101
| 3 60100000 001000000 | 07210300000 , 00100200011
P4 8 00010000 000100000 | 0001000000 0001£00011
5 00061000 000010000 | 0001100000 0009100000
6 00000100 000001000 Y 9000010000 | 00030100000
7 00000010 ! 03000100 |  ©000O0I000 | 00052010000 |
8 | ‘ 00000001 000000010 © 0290000100 | £NIN0I010N0
[ 0 | aoT Roslolalolol BN CJJuOOT’tr_T"_’T?WﬂT'TTFTU‘*
[ 2 I 0100000 | 61000000 | G10000001 | 0103000101 1 (7350041010
13 { 0010006 | 00100000 | 001000900 | 5010000011 | 20129098101
‘ 4 7 | 0001000 00010000 | 000100000 | 0001200111 | 20076006011
| 5 | 0000100 | 00061000 000610000 4 0003100050 ;  $5001G36500
| 6 { 0000010 | 00000100 | 000091000 | 000001000 30000169000
7L [ 0000001 | 00003010 090000100 _ | 0050021929 ;05002010790
[ 4 100000 | 1000C0 | 10000011 100000110 ¢ 3500C01110
‘ 2 | 010000 0100000 01600001 0100261CT 6100701010
3 6 021000 0010000 0160000 | 00100291? ~H16005101
4 000100 0001000 00010000 005100111 | 0601e2%e1N
5 000010 0000100 00001000 000010020+ 0000100600
6 000001 0000010 00000100 | 200001CI0  «  00OCG010CC0
T i —I0UC0 —TO000T TGO00TT TOOT0TTD TOTGITITT |
2 01000 010000 0100001 61000191 | 010001010
3 5 00100 001000 0010000 0010001 | 001600101
4 00010 000100 0061009 0001233 00710901
5 00001 000019 0000100 £eNrtS1) 1 002010000
|"T TO00 TO00T TOU0TT I oorTTI0 |
to2 4 0100 01300 010001 01001 C1001010
3 0010 00100 001000 0510017 | 00100101
4 0001 00010 001100 SOOI | 00010011
T 00 TOOT TOOTT TCOTTO | TOOTTIO |
2 3 010 0100 01001 010107 | 0101010
3 an 0010 00100 oclo1 0010101
1 > T TOT TOTT —I0TI0 TOTIT ]
L2 01 010 0101 onor i 101110
1 T | T L T T AL
n=11,k=6
i- 1 2 3 4 5 6
9; = 10000011101 0100007 .00 0010000701  0001000011C 00401000031 0CCO01000CC
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lists the basis vectors of these groups. The basis vectors have been
arranged so that the encoding function has a very simple form described

below. Let, for any s € S
h = uk(s) heH (6-18)

and let hd be the jth most significant bit of h. Then the code word, g,
is given by

k .
_ - - 3. -
g = B(s) = Gn’k(h) = _Zl@h 2 (6-19)

where Z @ denotes the exclusive-or summation, the dot represents the
binary product (or 'and' operation), and g.'s are the basis vectors of
Table 6-2. We use (6-2) for decoding and (6-3) for the calculation of
the channel distortion.

Tables 6-3 and 6-4 give the channel distortion, c¢(n,k), and the
total distortion, t(n,k), for the Gaussian density for p = 10_2 and
p = 10—3 for various values of (n,k). Tables 6-5 and 6-6 give the total
distortion for the uniform and the Laplacian densities. The channel
distortion for these densities can be easily obtained by subtracting the
quantizer distortion given in Table 6~1 from the total distortion.

Table 6-7 shows the effects of a proper choice of 8. The normal mapping
here corresponds to the mapping obtained by the procedure of [78] which
is optimum for the uniform density.

We note from (6-2) that the decoder is dependent upon the channel
bit-reversal probability p. While from (6-18) and (6-19) we note that
the encoder is independent of p for a givenG. 1In practice p might vary
from time to time and thus cannot be known exactly. So it becomes

necessary to know the robustness of the scheme as p deviates from the

v B - S T T e TR £ e iy Tk,
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design value. Table 6-8 shows that the scheme is indeed quite robust '
to a wide variation in p.

Figure 6-3 shows the effect of varying k on the total distortion
for a fixed rate (or n). The minima of the curves correspond to the
optimum value of k. Figure 6-4 gives the distortion-rate functions for
various densities with channel optimization. We notice that as the channel
becomes noiser, the distortion-rate curves start flattening.

We have also evaluated the performance of the scheme for two
important classes of discrete random processes. The first one is a one-
dimensional first order Markov process with one step correlation para-
meter p = .95. For this process the discrete cosine transform has been
known to perform very close to the K-L transform [2]. Hence the matrix
Y has been chosen to be the discrete Cosine transform [2]. Figure 6-5
shows the distortion-rate curves for this process for Gaussian distribution.

The second class is the 2-D random field with the isotropic covar-
iance model given by (A-2) with P; = pj = .95. Once again, we use the
discrete Cosine transform, because as shown in Appendix B it per-
forms very close to the K-L transform. TFigure 6~6 shows the distortion-
rate curves for this process with Gaussian distribution for array sizes
of 16 X 16 and 64 x 64. TFigure 6-7 shows the bit assignment pattern for
the 16 x 16 array size at 1 bit/sample rate. Figure 6-8 shows the per-
centage of bits assigned for channel error protection (or redundancy) as
a function of rate and array size. We notice that for low channel noise
(p = 10-3) this percentage is almost constant for different rates as well
as array sizes. Even for high levels of channel noise (p = 10_2) the

variation is not too large. Another noteworthy fact is that the channel
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(a) Bit-Assignment for Quantization, k(i,j).
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p =10

P = 10-2

(b) Additional Bits for Channel Error Protection, n(i,§) - k(i,j).

Bit-Assignment for 16 X 16 Cosine Transform Coding for a 2-D Isotropic

Bit-Rate = 1 Bit/Sample.

Random Field with p1 = pj = ,95.

-

Figure 6-7
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optimization scheme requires much less redundant bits for channel error
protection than the conventional error correcting codes would require.
As mentioned in chapter IV, for most images the transform coeffi-
cients could be assumed to be Laplacian distributed. So we have also
calculated the distortion-rate functions of the 2-D isotropic covariance
model for this distribution and compare the channel optimization scheme
(Scheme-1) with a (15,11) single error correction encoding scheme (Scheme~2)
and a scheme with no error correction (Scheme-3). Figure 6-9 shows the
distortion-rate curves for 16 X 16 array size for these three schemes.
The distortion-rate curve for Scheme~2 for p = 10—3 has been obtained
assuming that the effects of two and more errors ina 15 bit code could be
neglected due to their very low probability. Thus the curve is somewhat
optimistic and clearly the actual performance of the Scheme-1 relative
to the Scheme-2 would be even better than what is shown in Figure 6-9.
Roughly we can conclude that the performances of the Scheme-1 for p = 10 °,

that of the Scheme-2 for p = 10_3, and that of the Scheme-3 for p

[}
=
o

are close to each other.
The results of the previous gections were applied for coding a
256 x 256 Girl image originally digitized to 8 bits/sample. An isotropic
covariance model with py = pj = .95 and Laplacian distribution for the
transform coefficients were assumed. The array (or sub-block) size of
16 ¥ 16 and the Cosine transform were chosen in the coding algorithm. The
2

performance of the Scheme-1 and the Scheme-3 were evaluated for p = 10 °,

1073 at 1 bit/pixel.
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TABLE ¢-9

PERFORMANCE OF DATA COMPRESSION SCHEMES AT 1 BIT/PIXEL
FOR COSINE TRANSFORM CODING OF 256 x 256 GIRL IMAGE.

BLOCK SIZE = 16 x 16.

STGNAL TO NOTSE RATTO
SCHEME =0 5=.00T 5=

SCHEME -1 | 31.90 dB 31.40 dB 29.85 dB
SCHEME -3 | 31.90 dB 25.96 dB 20.05 dB

Table 6-9 gives the signal to noise ratio (SNR) and Figure 6~10
shows the original and the coded images. Figure 6-11 shows various
absolute error images amplified ten times. Since the effect of a bit
reversal is localized within a sub-block of an image, we call it "blocking
effect". From Figure 6-10 we see that for Scheme-1l the performances at
p=0and p = 10-3 are almost indistinguishable and at p = 10-2 the
blocking effects of channel noise are somewhat visible. While for
Scheme~3 (which provides no channel noise protection) the blocking effects
are quite visible even for p = 10-3 and very prominent at p = 10_2.

The results of Table 6-9 are in excellent agreement with those of
Figure 6-9, Since Figure 6-8 gives the distortion normalized by the
variance, while the SNR is normalized by the peak-to-peak signal energy,
the SNR for an image could be obtained from Figure 6-9 by subtracting

the mean square error in decibels from a constant

2
c =10 loglo{(peak-wje;k signal) }dB
o]

where 02 is the variance of the image. For the Girl image we get
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(a) Original 256 x 256 Image (b) Coded at 1 bit/pixel
8 bits/pixel p=20

(c) Coded at 1 bit/pixel (d) Coded at 1 bit/pixel
p= 10—3’ Scheme-3 p= 10-3, Scheme-1

(e) Coded at 1 bit/pixel (f) Coded at 1 bit/pixel
p = 1072, Scheme-3 p = 1072, Scheme-1
Images Resulting From 16 x 16 Cosine Transform Coding and Transmission
over a Binary Symmetric Channel.
! Figure 6-10




146

(b) Channel Noise (c) Channel Noise
p = 10‘3, Scheme-3 p = 10'3, Scheme-1
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(d) Channel Noise (e) Channel Noise
p= 10-2, Scheme-3 P= 10_2, Scheme~-1

Error Images Corresponding to the Coded Images of the Previous Figure

Figure 6~11
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(@]

2
_ (255)
- 1010810{1868.76} a8

15.42 dB.

Thus from Figure 6-9 we obtain the SNR for the Girl image for Scheme-1

at p = 1073 and 1 bit/pixel as

SNR = 15.42 - (-15.48) dB

30.90 dB

which is very close to the actual performance given in Table 6-9 as
31.40 dB. Thus the model used for the data compression of the Girl image
seems to be realistic.

It is also apparent by viewing Figure 6-11 that there is a marked
difference between the distribution and the visual effects of the two
sources of errors, i.e., the quantization and the channel noise. Thus it
might be desirable to assign different weights to these errors. This
could be easily incorported in our scheme by defining the total distortion

as

t(n,k) = q(k) + wC-C(n,k)

and then performing channel optimization as before. A suitable value of
weighting coefficient v has to be found experimentally.

The concept of channel optimization can also be extended to
hybrid coding. This and the application to interframe coding have been

left for future research.

[ -
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CHAPTER VII

SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE WORK

7.1 Summary

The new results presented in this thesis are summarized as
follows.

A hypothesis that the temporal dimension of most video motion
images consists mainly of a deterministic compenent, called motion, was
presented. A method for the visual characterization of the deterministic
component in a stationary mode, based on the temporal cross-sectionms,
was described. A piecewise linear translation model for the motion tra-
jectory estimation was developed. Based on this model, some simple
relationships to calculate statistical parameters of the random component
were derived.

A new technique for efficient estimation and coding of the deter-
ministic component was presented. The experimental results of application
of this technique to actual image data (Head and Shoulders and Chemical
Plant) show that it gives very good estimates and that the piecewise
linear translation approximation on a sub-block (of suitable size) basis
is reasonably good.

The registration of successive frames, called motion compensation,
results in a tremendous improvement in prediction (about 10 to 12 dB
decrease in interframe variance), and the remaining motion uncertainty
in the areas of motion is approximately uniformly distributed between O
to 0.5 pixels along both the spatial axes. This high degree of registra-

tion results in temporal bandwidth reduction, and permits reducing the
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sampling rate of the temporal axis (i.e., frame skipping). The missing
samples (or frames) can be fairly accurately reproduced by zeroth or
first order linear interpolation.

{ Simple first order Markov covariance models, e.g., separable,
result in very poor performance for a transform coder (interframe as well
as intraframe) compared with the measured statistical models. Also, the
simple (or non-adaptive) transformcoders, which are based on approxima-
tion of image random process by a wide sense stationary process, re-

sult in poor performance for motion images (mostly in reproduction of
sharp edges and motion). A significant improvement can be achieved by

an adaptive scheme which approximates the nonstationary process by four

piecewise stationary processes. However, for the biomedical projection
images the assumption of wide sense stationarity is reasonable.

Comparison of the non-adaptive intraframe and interframe schemes
for video motion images shows that the mean square performance of the
interframe scheme having a sub-block size of 16 x 16 x 16 can be matched
by an intraframe scheme having a sub-block size of 64 x 64 (the total
array size for both are the same).

The x-ray projection images have high correlation and the inter~
frame transform coding of these results in very high compression. The
effect of the distortion in the projection images on the reconstruction

of the 3-D object has been evaluated by reconstructing some transaxial

™y

cross-sections (or levels) of the object. The results show that high
compression ratios are achievable on these images.

The performance of a hybrid scheme for the video motion images can

-t be significantly improved by adapting the bit-rates and the statistics 3
; to the local variations in the sgpatial and temporal characteristics. A i

3
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simple criterion for this adaptation is proposed. Once again, this is
achieved by approximating the nonstationary process by four piecewise
stactionary processes.

The incorporation of motion compensation and 2:1 subsampling of
temporal axis results in further significant improvement in the perform-
ance of the adaptive hybrid coding. For the Head and Shoulders images
high quality images (SNR = 37 dB) are obtained at .125 bit/pixel or a
compression ratio of 64 is realized.

The adaptive hybrid coding (without motion compensation) results
in very high compression ratios for the angiocardigram x-ray motion
images. Compression ratios of 32-128 seem to be realizable based on the
evaluation of still images. Spatial statistics of these images are
represented very well by stationary models.

A method for the joint optimization of source coding and channel
coding for PCM transmission over noisy channels has been presented. It
was shown how this method could be applied to image transform coding.
The rate distortion curves and the experimental results on images show
that this method performs significantly better than the conventional
error correcting codes or schemes with no channel protection. For example,
at 1 bit rate and channel error probability 10—2, the proposed algorithm
improves the performance of an ordinary transform coder (designed for noise
free channel) by almost 10 dB.

The performance of the K-L, Cosine, Sine, Fourier, and Hadamard
transformg for several commonly used intraframe nonseparable covariance
models have been compared for an array size of 8 X 8. The results indi-
cate that for all these models (isotropic [53], NC1 [34}, and measured

covariance of a Girl image) the Cosine transform performs very close to

——

- "
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the optimum K~L transform, and the remaining transforms perform close to
each other. The performance of the K-L is about .05 dB better than the
Cosine and about 1 dB better than the remaining transforms. Earlier
results have shown the near optimality of the Cosine transform for

separable covariance model only.

7.2 Conclusions and Recommendations for Future Work

Based on the results and experimental evidence presented in this
thesis, we make the following conclusions and recommendations for further
investigation.

For multiframe motion images considered here, the motion between
successive frames can be very closely approximated by piecewise linear
translation of sub-blocks of size 8 X 8 to 32 x 32 with an average
accuracy of .25 pixel.

The interpolation of skipped frames along motion trajectory (ob-
tained by above approximation) results in excellent encoding of the
skipped frames. Thus, we conclude that the bandwidth of the temporal
domain can be significantly reduced by motion compensation.

The logarithmic search method of direction of minimum distortion
(DMD) could also be useful in many other applications of image registra-
tion, e.g., terminal guidance, template matching. This will be a subject
of our future research.

The performance of transform coding is highly dependent on the
statistical model, especially at high bit-rates. Measuring the statis-
tics in transform domain results in a significant improvement in per-

formance (2-4 dB). We have not addressed the question of how often the

P —— o e = — e
-:q.rrw L -
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statistics need to be measured for a given application. It has been
left for future investigation.

The mean square performance of the nonadaptive intraframe and
interframe transform coding schemes is comparable for equal total array
size of the sub-block, thus making the interframe transform coding un-
attractive for motion images. Further investigation is required to
estahlish the effect of array size on coder performance.

The adaptive variable bit-rate transform and hybrid coders have
much better performance. The result is improved by 4 dB over the non-
adaptive schemes, and the motion and the sharp features are better
reproduced.

Motion compensation and alternate frame skipping, with interpo-
lation of skipped frames along motion trajectory, results in a further
compression gain by a factor of two. Higher compression gain seems likely
by further reducing the sampling along of the temporal axis and interpo-
lation along motion trajectory. Although we have only applied the motion
compensation method of chapter II to hybrid coding, this and subsampling
of temporal axis can also be used with the predictive coding schemes of
chapter 111 and similar gains are expected. Application of motion com-
pensation to 3-D transform coding seems to be difficult.

The joint optimization of the source coding and the channel coding
results in significant improvement in performance of a coding scheme.

The concept of channel optimization for PCM transmission can be easily
extended to DPCM and thus to the hybrid coding methods.

The cosine transform performs very cloge to the optimal K-L and
its many computational advantages over K-L makes it a better choice for

image data compression for a variety of random fields.
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Some of the techniques of video bandwidth compression can be
applied to the biomedical x-ray images with very high compression. Further
research in this area is needed to more qualitatively evaluate the effects

of distortion on the medically useful information.
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APPENDIX A

MODELING OF INTRAFRAME IMAGE STATISTICS

A.l1 Covariance Models for 2-D Images:

The second order statistics of images are required for many image
processing applications, e.g., restoration, and coding. Assuming that the
images belong to 2-D stationary random fields,a widely used model for

image covariances is the separable model given by

" & B 28 ) = ()"0 (a-1)

mn >0, o] <1, Jp,f <1

where ui,j is the intensity of (i,j)th pixel and pi and oj are one step
correlation parameters along indices i and j. Without loss of generality
we have assumed images having zero mean and unity variance.

Although the model of (A-1) results in a very simple mathematical
analysis, it is known to be a poor approximation of the actual image co-
variances [34]. Another image model, which is called isotropic covariance
model [53,66], is known to be a better approximation for most images but
has not been used widely so far because of resulting difficulties in

analysis. It is given by

n = exp{—/a m + a nz} (A-2)

where

a, = (Qn{pi})2 ; o, = (Qn{pj})2

3

and p = pj if the images are sampled at the same rate along both the axes.

- -
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Equation (A-2) then simply means that the correlation between any two
image points is an exponentially decreasing function of their goemetric
distance, while in (A-1) it is the sum of the horizontal and vertical
distances. From this statement it is clear that (A-2) would be a better
model for most images. In [35] it has been demonstrated that the models
which closely approximate (A-2) give much better performance in filtering
images than that of (A-1).

A model based on a finite difference approximation of an elliptical
partial differential equation,reported in [34], and referred as NCl model
[34,35], has been found very useful in modeling image statistics. It is
a four point nearest neighbor non-causal (NC) model represented by the

relationship

u, , = (u (A-3)

i,3 )+ ei

i-1,5 T Y41, T U,3-1 Y, i

where {ei j} is a zero mean, moving average field whose covariance function
’
is

2

] =B7( $ ) (A-4)

El f-mdg-n = VOi me184-nt1

€1,%n,n

and § is the Kronecker delta function. Suitable values of o, 82 and y

could be found for a class of images. The application of this model for

filtering and data compression could be found im [35] and [75] respectively.

The calculation of covariances generated by this model is described in [34].
Sometimes a direct model of covariances is obtained by measuring

these quantities for a given image data as follows. Let K X L be the i

slze of a window over which the covariances are desired and M X N be the

size of data array, U, such that

- B e I B b el NS ARG
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K<<M and L << N.

Then., we define

M-K N-L M-K N-L

_ 2
nm,n B E Z ui,jui+m,j+n Z

ug (A-5)
i=1 j=1 i=1 j=1 **J

0<m<K-1, 0<n<L-1.

A.2 Computation of Transform Coefficient Variances:

For intraframe transform coding, as well as for interframe hybrid
coding,we need to know the statistics of images in the transform domain,
particularly the variances of the transform coefficients. Let U denote
an M X N block of an image, wL denote an L X L unitary transform, V denote
the M X N array of the transform coefficients of U, and W the array of the

variances of transform coefficients. Then

T
V=9 UY

and WeEl(y )1 1<igM, 1<ieN.
’

Let bar on the top of an array represent lexicographic ordering of the

elements into a one dimensional array and R = {1 : 0 <i <M1,

i,]
0 < j < N-1} be an M X N covariance matrix of the image random field. We
wish to find the elements of W,given R. From the above definitions, it

could be easily seen that

<

= (Yy ® YU (A-6)

=|

and = Diag.{E[Vifﬁ} (A-7)

.
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where & denotes the Kronecker product of matrices and Diag.{B} represents
a one dimensional array containing the diagonal elements of a square matrix

B. From (A-6) and (A-7) we have

W

Diag. {(h, @ %) EITT'] (Y @ v}

or W

Diag. { (1, ® )R (U @ )} (4-8)

where 62 is a N X N symmetric block Toeplitz matrix whose each element is

an M x M symmetric Toeplitz matrix. The elements of R are given by

igsen T Miealig] PEBIEN, TokE o (49)

where the first two subscripts of ® refer to the addresses of the blocks
and the last two refer to the addresses of the elements within a block.

Thus,one can calculate the transform coefficient variances by
appropriately taking the transform of ®. We have also found an efficient
algorithm for computing (A-8) which exloits the Toeplitz structure of 74
and the fact that only diagonal elements of its transform are needed.

This will be published elsewhere.

Table A-1 shows the cosine transform coefficient variances for a
sub-block size of 16 X 16 measured over the 16 frames of Head and Shoulders
data set. Each sub-block was first transformed by a discrete Cosine trans-
form and then for each transform coefficient the variance was measured over
all the data sub-blocks. Table A-2 shows a 2-D 16 x 16 covariance matrix,
R, corresponding to the model of (A-2) and Table A-3 shows its correspond- ¢
ing Cosine transform coefficient variance matrix, W. Comparing the cor-

responding entries of Tables A-1 and A-3, the ratio is not too far from
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unity for the lower order coefficients, while for higher order coeffi-
cients the ratio is too far deviated from unity.

The consequence of the above is that at lower bit-rates, where no
bits are assigned to most higher order coefficients, the performance of
the coders using variances of Tables A-1 or A-3 would be very close and
hence (A-2) is a good model. But at higher bit-rates, the variance distri-
bution of Table A-3 would tend to assign bits to higher order coefficients
unnecessarily. We have found experimentally that for high resolution
smooth images, which have very low variance for higher order coefficients,
a correction factor applied to the transform coefficient variances,
resulting from the model of (A-2), improves the performance at high bit-
rates considerably. One such correction factor, for Head and Shoulders,

data, is given by
wi ., =hw, ,(p) , b =150 (A-10)

where o= (oi + oi)/2

and h is chosen such that

Table A-4 shows the matrix of Table A-3 with the above correction factor.
We can see that the entries of Tables A-1 and A-4 are close and hence the
model of (A-2) with the correction factor of (A-10) is a better model for
coding the images belonging to the same class as the Head and Shoulders
images than (A-2) with no correction. However, this correction factor is

data dependent, but a suftable value of parameter b in (A-10) could be

found for other data.
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APPENDIX B

COMPARISONS OF 2-D TRANSFORMS

Several discrete unitary transforms have been used for intraframe
and interframe transform coding of images. These are Karhunen-Loeve
(or K-L), Fourier, Cosine, Sine, Hadamard, Haar, Slant, etc. Of these
the K-L transform is the optimum transform for data compression (the
performance criterion is discussed in section B.1l) and is dependent on the
statistics of the data. The remaining transforms are data independent
and also have FFT type fast computational algoritams. For these reasons,
the others are preferred over the K-L in practice.

For a class of one-dimensionai signals, i.e., first order Markov
process with high correlation, the discrete Cosine transform (or DCT) is
known to perform very close to the K-L transform [2,33]. Since the 2-D
DCT is defined as a separable product (i.e., Kronecker product) of the
one-dimensional DCT, it follows fr:m the above that it will rerform very
close to the 2-D K-L transform for a 2-D separable first order Marlov
field given by (A-1), for highly correlated data such as images. Although
the separable model of (A-i) has been used for data compression [67,68,87],
for reasons discussed in Appendix A, nonseparable models are preferable
in many cases. Therefore,the nonseparable models described by (A-2),
(A-3), (A-4), (A-5) and others have been used for data compression [49,53,
67,68,75} with better results than the separable model. The most commonly
used transforms in these studies are the Cosine and the Hadamard.

The former for its better performance and the latter for its simplicity.
wwever, no theoretical or experimental evidence exists for the relative

‘rmance of various transforms for nonseparable fields.

- caleaw
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We have done some evaluations of the performance of K-L, Cosine,
Sine, Fourier, and Hadamard transforms for a number of commonly used
nonseparable covariances. Our reults show that the Cosine transform

performs extremely close to the optimum K~L transform.

B.l Transforms and Their Performance Measure:

Let U denote an MN X 1 vector array obtained by lexicographic

ordering of a real M X N 2-D array U. We define its transform by
V=AU . (B-1)
If the transform matrix A could be written as
A= A1®A2 (B-2)

where A1 and A2 are M X M and N X N matrices respectively, then it is

called a separable transform and (B-1) could be written as
V=A UAL (B-2)
1772

where V is an M X N array obtained by inverse lexicographic ordering of
V. The K-L transform, characterized by maximum mean square energy com-
paction property, consists of the eigenvectors of the matrix &Zdefined by
(A~9). Note that the K~L transform AK—L corresponding to an arbitravry co-

variance matrix @, which is not separable, is not separable. Let

2

=2
ok=E[Vk] 1< k<M

and the rows of A be arranged such that

2
i

vi<j . (B-4)

v
Q
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Note that the sequence {Ui} consists of the elements of matrix W defined

in Appendix A.

We restrict our attention to transforms which are unitary

(all the transforms discussed above are unitary), i.e.,

Al o a*T

For the K-L transform,the sequence {oi} is nothing but the eigenvalues of

CR arranged in descending order.
We define the performance of a transform by a sequence of basis

restriction errors {bi: 0 < i < MN} defined by

T 2/

b, = o} o} 0<i<MN-1 (B-5)
I eitl ¥ k=1 K

by = O-

Each bi represents the normalized minimum mean square error if only i of
the transform coefficients are retained. For the K~L transform the se-

quence {bi} is minimum, i.e.,

By < ©) (B-6)
or i i
2 2
kzl(ck)K'L > kzlok . (B-7)

Thus, the K-L transform is optimum in the sense that it minimizes the

mean square error when some of the transform coefficients are discarded.
Since {ci} represents the mean square energy of the transform coefficients,
the property (B-7) is called maximum mean square energy compaction pro-

perty of the K-L transform.
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Another performance measure used in data compresion applications
is the distortion-rate function which is defined below. Let each trans-
form coefficient be independently quantized to a finite number of levels
and di be the mean square error per unit variance due to the quantization

of the ith coefficient of array V} then

MN 9
D= ) o4d, (3-8)
. ii
i=1
gives the total mean square distortion in a transform coding system with

a noiseless channel. Let n, be the number of bits required to code the

output of the ith quantizer. Then the rate is given by

MN
R, = ﬁ%’ Z n, bits/sample, n, = integer > 0 (B-9)
& i -
i=1
where the sequence {ni} is chosen such that D in (B-8) is minimized for a

fixed RD' The D vs RD curves obtained from (B-8) and (B-9) are the

distortion-rate functions for an integer bit allocation scheme.

B.2 Experimental Results:

We compare the performance of the K-L, Cosine, Sine, Fourier, and
Hadamard discrete transforms which are often considered for data com~
pression. The definition and properties of these and some other transforms
could be found in [3,31,58]. We have chosen two block sizes which are
of interest in data compression, i.e., 8 X 8 and 16 X 16. For some of the
comparisons the complexity of computing the eigenvalues of matrix
prohibits sizes larger than 8 X 8,

All the above transforms other than Fourier are real,and result in

MN real nonredundant transform coefficients for an array size of M X N.
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Since the data is assumed to be real, of the MN complex Fourier coeffi-
cients,only (MN/2 + 2) are real and (MN/2 - 2) imaginary components are
nonredundant (due to symmetry). It is therefore sufficient to consider
the variances of these components in obtaining the sequence {oi}.
Figures B-1 through B~3 show the basis restriction errors for

the above mentioned transforms for M = 8, N = 8 and the three nonseparable
random fields described by (A-2), (A-3), (A-4) and (A-5) in Appendix A.
For the isotropic field of (A-2),the values of pi = pj = .95 yere chosen

[53}. For the noncausal NC1 model of (A-3) and (A-4) the values of the

parameters were chosen to be

P

a = .2496, 8% = 0744, y = .95.

These values were found by a least squares fit of the model and the

16 x 16 measured covariances for the Girl image shown in Figure 6-10(a)
[34,35]. For the measured covariance model of (A-5), the same Girl image
data was used.

Figure B-4 shows the distortion-rate curves for the isotropic
model assuming a Gaussian distribution for the transform coefficients.
The distortion has been calculated based on optimum mean square quanti-
zation [47) and optimum integer bit allocation (i.e., via integer pro-
gramming algorithm) of [86]. Figures B-5 and B-6 show the distortion-
rate curves for the isotropic model of (A-2) and the separable model of

(A-1) respectively, for by = = 95, M= N = 16. For this array size,

°3
E the K-L transform was excluded due to computational difficulties. Table
B-1 gives the results of Figures B-4 and B~5 in numerical form. 3

From Figures B~1 thru B-4 we note that the performance of the

Cosine transform is very close to the optimum K-L transform for all the
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three nonseparable models. While the performance of the remaining three
is not too close to the K-L but quite close to each other. The perform
ance of the Cosine transform is about .05 dB inferior to the K-L while
that of others is about 1.0 dB. At a bit rate of 1 bit/pixel the Cosine
would require a rate increase of approximately 1% to match the performance
of the K-L while the others would require about 25% increase. From
Figures B-5 and B-6 we note that the relative performance does not change
much for a slightly larger array size as well as for considerable dif-
ferent models.

Since the Cosine transform can be implemented by a fast algorithm
[2,15] and is data independent, its computational advantages over the K-L
overwhelm the marginal difference in performance. The performance dif-~
ferences between the Cosine, Sine, Fourier, and the K-L will decrease
further as the array size is increased. Since all these sinusoidal trans-
forms are asymptotically equivalent [33].

Thus the prime advantage of Cosine transform coding remains
in the common situation where a larger image is coded block by block with
typical block size of 16 X 16 or 8 x 8., Finally, we note that the re-
cursive block-coding of random fields via fast K-L transform algorithms
[36] achieve rates close to and better (!) than conventional K-L trans-
form block-coding method, by coding the boundary variables of a block
separately and exploiting the interblock redundancy represented by the
boundary variables. Comparison with these algorithm is not made here

and is left as a future study.
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